• Title/Summary/Keyword: Optimal Programming

Search Result 1,339, Processing Time 0.035 seconds

On the Relationship between $\varepsilon$-sensitivity Analysis and Sensitivity Analysis using an Optimal Basis

  • Park, Chan-Kyoo;Kim, Woo-Je;Park, Soondal
    • Management Science and Financial Engineering
    • /
    • v.10 no.2
    • /
    • pp.103-118
    • /
    • 2004
  • $\epsilon$-sensitivity analysis is a kind of methods for performing sensitivity analysis for linear programming. Its main advantage is that it can be directly applied for interior-point methods with a little computation. Although $\epsilon$-sensitivity analysis was proposed several years ago, there have been no studies on its relationship with other sensitivity analysis methods. In this paper, we discuss the relationship between $\epsilon$-sensitivity analysis and sensitivity analysis using an optimal basis. First. we present a property of $\epsilon$-sensitivity analysis, from which we derive a simplified formula for finding the characteristic region of $\epsilon$-sensitivity analysis. Next, using the simplified formula, we examine the relationship between $\epsilon$-sensitivity analysis and sensitivity analysis using optimal basis when an $\epsilon$-optimal solution is sufficiently close to an optimal extreme solution. We show that under primal nondegeneracy or dual non degeneracy of an optimal extreme solution, the characteristic region of $\epsilon$-sensitivity analysis converges to that of sensitivity analysis using an optimal basis. However, for the case of both primal and dual degeneracy, we present an example in which the characteristic region of $\epsilon$-sensitivity analysis is different from that of sensitivity analysis using an optimal basis.

The Study of Optimal Operation Development of PV + ESS Active System for Zero Energy Building (제로에너지건물 구축을 위한 PV + ESS 액티브 시스템의 최적운영개발에 관한 연구)

  • Woo, Sung-Min;Moon, Jin-Chel;Ahn, Jong-Wook;Kim, Yong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.5
    • /
    • pp.53-63
    • /
    • 2019
  • This paper in order to efficiently operate zero energy buildings developed a methodology for optimal operation of PV + ESS active systems. This program consists of three steps. First step is PV optimal operation and second step is PV + ESS optimal operation. Third step is the analysis of the results by PV + ESS optimal operation. The optimal operation of PV + ESS was calculated by using Dynamic Programming (DP). Therefore, the optimal capacity and operating plan of PV + ESS in this study are calculated for electric load at building. This paper conducted case study to verify the validity of the developed algorithm. Also, the sensitivity analysis analyzed the effect of each variable on the optimal operation.

A Study on ESS Optimal Operation Strategy Using Two Stage Hybrid Optimization (Two Stage Hybrid Optimization을 사용한 ESS 최적 운전 전략에 대한 연구)

  • Gong, Eun-Kyoung;Sohn, Jin-Man
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.7
    • /
    • pp.833-839
    • /
    • 2018
  • This paper presents an analysis and the methodology of optimal operation strategy of the ESS(Energy Storage System) for reduce electricity charges. Electricity charges consist of a basic charge based on the contract capacity and energy charge according to the power usage. In order to use electrical energy at minimal charge, these two factors are required to be reduced at the same time. QP(Quadratic Programming) is appropriate for minimization of the basic charge and LP(Linear Programmin) is adequate to minimize the energy charge. However, the integer variable have to be introduced for modelling of different charge and discharge efficiency of ESS PCS(Power Conversion System), where MILP(Mixed Integer Linear Programming) can be used. In this case, the extent to which the peak load savings is accomplished should be assumed before the energy charge is minimized. So, to minimize the electricity charge exactly, optimization is sequentially performed in this paper, so-called the Two Stage Hybird optimization, where the extent to which the peak load savings is firstly accomplished through optimization of basic charge and then the optimization of energy charge is performed with different charge and discharge efficiency of ESS PCS. Finally, the proposed method is analyzed quantitatively with other optimization methods.

A New Approach for Forest Management Planning : Fuzzy Multiobjective Linear Programming (삼림경영계획(森林經營計劃)을 위한 새로운 접근법(接近法) : 퍼지 다목표선형계획법(多目標線型計劃法))

  • Woo, Jong Choon
    • Journal of Korean Society of Forest Science
    • /
    • v.83 no.3
    • /
    • pp.271-279
    • /
    • 1994
  • This paper descbibes a fuzzy multiobjective linear programming, which is a relatively new approach in forestry in solving forest management problems. At first, the fuzzy set theory is explained briefly and the fuzzy linear programming(FLP) and the fuzzy multiobjective linear programming(FMLP) are introduced conceptionally. With the information obtained from the study area in Thailand, a standard linear programming problem is formulated, and optimal solutions (present net worth) are calculated for four groups of timber price by this LP model, respectively. This LP model is reformulated to a fuzzy multiobjective linear programming model to accommodate uncertain timber values and with this FMLP model a compromise solution is attained. Optimal solutions of four objective functions for four timber price groups and the compromise solution are compared and discussed.

  • PDF

Optimal Reservoir Operation Using Goal Programming for Flood Season (홍수기 Goal Programming을 이용한 저수지 최적운영)

  • Kim, Hye-Jin;Ahn, Jae-Hwang;Choi, Chang-Won;Yi, Jae-Eung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.67-71
    • /
    • 2010
  • 홍수기 다목적댐 운영의 목적은 홍수조절용량을 최대한 이용하여 하류 주요 지점의 첨두홍수량을 저감시키거나, 계획홍수량을 초과하지 않도록 방류량과 방류시점을 조절함으로써 홍수 피해규모를 최소화하는 것이다. 본 연구에서는 홍수기 다목적댐 운영에서 다목적 최적화의 한 형태인 goal programming의 적용성을 검토하였다. 실제 강우사상을 이용하여 단일저수지 운영과 저수지 연계운영을 실시하였다. 단일 저수지 운영을 적용하기 위한 시험유역으로는 충주댐 유역을 선정하였고 저수지 연계운영을 적용하기 위한 시험유역으로는 안동댐과 임하댐 유역을 선정하였다. goal programming의 결과 분석을 위해 저수지 모의운영 모형인 HEC-5 모형의 결과와 비교, 분석하였다. goal programming을 이용할 경우 HEC-5 운영결과보다 안정적인 운영결과를 얻을 수 있었다. goal programming을 이용한 최적화 운영의 경우 전구간의 유입량을 알고 있다는 점에서 실제 저수지 운영과는 차이가 있다. 그러나 적절한 제약조건을 적용하고 홍수예경보를 이용하여 예보된 유입량을 활용하면 최적의 방류시점과 방류량을 산정하여 홍수기 다목적댐을 효율적으로 운영할 수 있으며 주요 지점의 홍수량도 저감할 수 있을 것으로 판단된다.

  • PDF

Characteristics of Programming on Analog Memory Cell Fabricated in a 0.35$\mu{m}$Single Poly Standard CMOS Process (0.35$\mu{m}$ 싱글폴리 표준 CMOS 공정에서 제작된 아날로그 메모리 셀의 프로그래밍 특성)

  • 채용웅;정동진
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.6
    • /
    • pp.425-432
    • /
    • 2004
  • In this paper, we introduce the analog memory fabricated in a 0.35${\mu}{\textrm}{m}$ single poly standard CMOS process. We measured the programming characteristics of the analog memory cell such as linearity, reliability etc. Finally, we found that the characteristics of the programming of the cell depend on the magnitude and the width of the programming pulse, and that the accuracy of the programming within 10mV is feasible under the optimal condition. In order to standardize the characteristics of the cell, we have investigated numbers of cells. Thus we have used a program named Labview and a data acquisition board to accumulate the data related to the programming characteristics automatically.

MEASURE THEORETICAL APPROACH FOR OPTIMAL SHAPE DESIGN OF A NOZZLE

  • FARAHI M. H.;BORZABADI A. H.;MEHNE H. H.;KAMYAD A. V.
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.315-328
    • /
    • 2005
  • In this paper we present a new method for designing a nozzle. In fact the problem is to find the optimal domain for the solution of a linear or nonlinear boundary value PDE, where the boundary condition is defined over an unspecified domain. By an embedding process, the problem is first transformed to a new shape-measure problem, and then this new problem is replaced by another in which we seek to minimize a linear form over a subset of linear equalities. This minimization is global, and the theory allows us to develop a computational method to find the solution by a finite-dimensional linear programming problem.

Management for Company Objectives with Considerations of Optimal Production/Sales Planning (최적 생산/판매 계획을 통한 기업 목표 관리 사례)

  • Jung, Jae-Heon
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.34 no.2
    • /
    • pp.77-90
    • /
    • 2009
  • Total profit level Increases if a company increase the cost for achieving R&D related goals of equipment productivity enhancement, production cost saving, or for achieving equipment scale target, sales volume goal. But how much money should be invested to achieve a certain level of profit? We formulated the model to set the optimal goal levels to minimize the investment cost under the constraint that certain level of total profit should be guaranteed. This model derived from a case of P steel company. We found that this should be considered in relation with the production sales planning (known as optimal product mix problem) to guarantee the profit. We suggested a nonlinear programming model, 3 valiant form of the p+roduct mix problem. We can find the optimal Investment level for the R&D related goals or sales volume goal, equipment scale target for the P steel company using the model.

Global Search for Optimal Geometric Path amid Obstacles Considering Manipulator Dynamics (로봇팔의 동역학을 고려한 장애물 속에서의 최적 기하학적 경로에 대한 전역 탐색)

  • 박종근
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1133-1137
    • /
    • 1995
  • This paper presents a numerical method of the global search for an optimal geometric path for a manipulator arm amid obstacles. Finite term quintic B-splines are used to describe an arbitrary point-to-point manipulator motion with fixed moving time. The coefficients of the splines span a linear vector space, a point in which uniquely represents the manipulator motion. All feasible geometric paths are searched by adjusting the seed points of the obstacle models in the penetration growth distances. In the numerical implementation using nonlinear programming, the globally optimal geometric path is obtained for a spatial 3-link(3-revolute joints) manipulator amid several hexahedral obstacles without simplifying any dynamic or geometric models.

  • PDF

OPTIMAL TORQUE MANAGEMENT STRATEGY FOR A PARALLEL HYDRAULIC HYBRID VEHICLE

  • Sun, H.;Jiang, J.H.;Wang, X.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.791-798
    • /
    • 2007
  • The hydraulic hybrid vehicle(HHV) is an application of hydrostatic transmission technology to improve vehicle fuel economy and emissions. A relatively lower energy density of hydraulic accumulator and complicated coordinating operations between two power sources require a special energy management strategy to maximize the fuel saving potential. This paper presents a new type of configuration for parallel HHV to minimize the disadvantages of the hydraulic accumulator, as well as a methodology for developing an energy management strategy tailored specially for PHHV. Based on an analysis of the optimal energy distribution between two power sources over a representative urban driving cycle with a Dynamic Programming(DP) algorithm, a fuzzy-based optimal torque management strategy is designed and developed to control the torque distribution. Simulation results demonstrates that the optimal torque management strategy maximizes the advantages of this hybrid type of configuration, and the high power density characteristics of hydraulic technology effectively improve the robustness of the energy management strategy and fuel economy of the PHHV.