• Title/Summary/Keyword: Optimal Inventory Level

Search Result 128, Processing Time 0.024 seconds

Development of an Efficient Decision Rule for Blood Inventory Management (효율적인 혈액 재고 관리를 위한 결정룰의 도출)

  • 서정대
    • Journal of the Korea Society for Simulation
    • /
    • v.5 no.1
    • /
    • pp.13-27
    • /
    • 1996
  • The management of blood inventory is very important within the medical care system. The efficient management of blood supplies and demands for transfusion is of great economic and social importance to both hospitals and patients. Fro any blood type, there is a complex interaction among the optimal inventory level, daily demand level , daily supply level, transfusion to crossmatch ratio, crossmatch release period, issuing policy and the age of arriving units that determine the shortage and outdate rate. In this paper, we develop an efficient decision rule for blood inventory management in a hospital blood bank which can support efficient hospital blood inventory management using simulation, The primary use of the efficient decision rule will be to establish minimum cost function which consists of inventory levels , period in inventory, outdate and shortage rate for whole blood and various component inventories for a hospital blood bank or a transfusion service, If the adminstrator compute the mean daily demand for each blood type, the mean daily supply for each blood type, the length of the crossmatch release period and the average transfusion to crossmatch ratio , then it is possible to apply the efficient decision rule to compute the optimal inventory level, inventory period , outdate and shortage rate. This rule can also be used as a decision support system that allows the blood bank adminstrator to do sensitivity analysis related to controlled blood inventory parameters.

  • PDF

An Optimal Pricing and Inventory control for a Commodity with Price and Sales-period Dependent Demand Pattern

  • Sung, Chang-Sup;Yang, Kyung-Mi;Park, Sun-Hoo
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.904-913
    • /
    • 2005
  • This paper deals with an integrated problem of inventory control and dynamic pricing strategies for a commodity with price and sales-period dependent demand pattern, where a seller and customers have complete information of each other. The problem consists of two parts; one is each buyer's benefit problem which makes the best decision on price and time for buyer to purchase items, and the other one is a seller's profit problem which decides an optimal sales strategy concerned with inventory control and discount schedule. The seller's profit function consists of sales revenue and inventory holding cost functions. The two parts are closely related into each other with some related variables, so that any existing general solution methods can not be applied. Therefore, a simplified model with single seller and two customers in considered first, where demand for multiple units is allowed to each customer within a time limit. Therewith, the model is generalized for a n-customer-classes problem. To solve the proposed n-customer-set problem, a dynamic programming algorithm is derived. In the proposed dynamic programming algorithm, an intermediate profit function is used, which is computed in case of a fixed initial inventory level and then adjusted in searching for an optimal inventory level. This leads to an optimal sales strategy for a seller, which can derive an optimal decision on both an initial inventory level and a discount schedule, in $O(n^2)$ time. This result can be used for some extended problems with a small customer set and a short selling period, including sales strategy for department stores, Dutch auction for items with heavy holding cost, open tender of materials, quantity-limited sales, and cooperative buying in the on/off markets.

  • PDF

An Optimal Algorithm for Repairable-Item Inventory System with Depot Spares (중앙창 재고가 있는 수리가능시스템을 위한 해법)

  • 김종수;신규철
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.24 no.3
    • /
    • pp.1-11
    • /
    • 1999
  • We consider the problem of determining the spare inventory level for a multiechelon repairable-item inventory system. Our model extends the previous results to the system which has an inventory at the central depot as well as bases. We develop an optimal algorithm to find spare inventory leveis, which minimize the total expected cost and simultaneously satisfy a specified minimum service rate. The algorithm is tested using problems of various sizes to verify the efficiency and accuracy.

  • PDF

An Integrated Control Problem of Secondary Sourcing and Inventory in A Supply Chain (공급체인에 있어서 이차원천과 재고의 통합적 통제에 관한 연구)

  • Kim, Sung-Chul
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.32 no.1
    • /
    • pp.93-104
    • /
    • 2007
  • We consider a supply chain where products are shipped to warehouse from manufacturing system to customers. Products are supplied from either in-house regular manufacturing or the secondary source such as subcontractor. The inventory in warehouse is controlled by base-stock policy, that is, whenever a demand arrives from customer, an order is released to the manufacturing system. Unsatisfied demand is backlogged. The manufacturing system is modeled as M/M/s+1/c queueing system, and the orders exceeding the given limit care blocked and lost. The steady state distribution of the outstanding orders and the throughput of the manufacturing system are functions of the level of engagement In the secondary source. There is a profit obtained from throughput and cost not only due to the engagement of the secondary source in the manufacturing system but also inventory positions. We want to maximize the total production profit minus the total cost of the production system by simultaneously determining the optimal level of engagement of the secondary source and the optimal base-stock level of the inventory. We develop two algorithms : one without guarantee of the optimal solution but with the small number of computations, the other optimal but with more computations.

Optimizing Concurrent Spare Parts Inventory Levels for Warships Under Dynamic Conditions

  • Moon, Seongmin;Lee, Jinho
    • Industrial Engineering and Management Systems
    • /
    • v.16 no.1
    • /
    • pp.52-63
    • /
    • 2017
  • The inventory level of concurrent spare parts (CSP) has a significant impact on the availability of a weapon system. A failure rate function might be of particular importance in deciding the CSP inventory level. We developed a CSP optimization model which provides a compromise between purchase costs and shortage costs on the basis of the Weibull and the exponential failure rate functions, assuming that a failure occurs according to the (non-) homogeneous Poisson process. Computational experiments using the data obtained from the Korean Navy identified that, throughout the initial provisioning period, the optimization model using the exponential failure rate tended to overestimate the optimal CSP level, leading to higher purchase costs than the one using the Weibull failure rate. A Pareto optimality was conducted to find an optimal combination of these two failure rate functions as input parameters to the model, and this provides a practical solution for logistics managers.

A Study on Determining the Optimal Number of Equipment Spares under Availability Consideration (가용도를 고려한 장비의 최적 예비부품수 결정에 관한 연구)

  • Park Beom-Chang;Gang Seong-Jin
    • Journal of the military operations research society of Korea
    • /
    • v.16 no.2
    • /
    • pp.83-95
    • /
    • 1990
  • This paper addresses the problem of determining the optimal number of spares for a system consisting of multi-item parts. In commercial sector, the cost minimization is mainly considered as an objective functions in most inventory models. However, in the military inventory systems, it is more stressed on maximizing the system availability than minimizing the system cost because the field commander always wants the system to be in perfect working condition to prepare against an emergence case. In this point of view, this paper develops an inventory model which decides the optimal number of spares by minimizing units short and simultaneously achieving a certain level of system availability. Solution algorithms are derived using the generalized Lagrange multiplier approach and marginal analysis approach. Sample data and output results are provided and sensitivity analysis is performed as the level of system availability changes in order to decide the optimal number of spares and availability in terms of economic sense.

  • PDF

Optimal Inventory and Price Markdown Policy for a Two-Layer Market with Demand being Price and Time Dependent

  • Jeon, Seong-Hye;Sung, Chang-Sup
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.11a
    • /
    • pp.142-146
    • /
    • 2006
  • This paper considers a SCM issue concerned with an integrated problem of inventory control and dynamic pricing strategies when demands are price and time dependent. The associated price markdowns are conducted for inventory control in a two-layer market consisting of retailer and outlet as in fashion apparel market. The objective function consists of revenue terms (sales revenue and salvage value) and purchasing cost term. Specifically, decisions on price markdowns and order quantity are made to maximize total profit in the supply chain so as to have zero inventory level at the end of the sales horizon. To solve the proposed problem, a gradient method is applied, which shows an optimal decision on both the initial inventory level and the discount pricing policy. Sensitivity analysis is conducted on the demand parameters and the final comments on the practical use of the proposed model are presented.

  • PDF

A Study on Robust Design of JIT System in Uncertain Environment (불확실한 환경에서의 JIT시스템 강건설계에 관한 연구)

  • 조용욱;박명규
    • Journal of the Korea Safety Management & Science
    • /
    • v.2 no.2
    • /
    • pp.29-40
    • /
    • 2000
  • In this paper, under JIT kanban system designed by Moeeni, each performance measures (service level, inventory level) identify the robust optimal level at a uncertain environment, and when there are multiple performance characteristics, it propose the optimal design-method and the optimal level decision-method, which consider multiple performance characteristics.

  • PDF

Analysis of Multi-branch Inventory Distribution System for an Item with Low Level of Demand : Lost Sale Model (다지점으로 구성된 재고시스템의 최적화 분석 : 저수요, 유실판매 모형)

  • Yoon Seung Chul;Choi Young Sub
    • Proceedings of the Society of Korea Industrial and System Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.349-357
    • /
    • 2002
  • This research is basically deals with an inventory distribution system with several regional sales branches. Under the continuous review policy, each sales branch places an order to its supplier whenever on hand plus on order inventory falls on the order point, and the order quantity is received after elapsing a certain lead time. This research first shows the method how to apply the product with low lever of demand into the continuous review policy. For the application, we use an order level as the maximum level of inventory during an order cycle. Also we analyze the lost sales case as a customer behavior. Further we use variable demands and variable lead times for more realistic situation. Based on the above circumstances, the research mainly discusses those methods to decide the optimal order level, order point, and order quantity for each sales branch which guarantees the system wide goal level of service, while keeping the minimum level of the system wide total inventory.

  • PDF

Analysis of Multi-branch Inventory Distribution System for an Item with Low Level of Demand and Lost Sale Allowed (다지점으로 구성된 재고시스템의 최적화 분석 : 저수요, 유실판매 모형)

  • 윤승철;최영섭
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.25 no.3
    • /
    • pp.78-84
    • /
    • 2002
  • This research is basically deals with an inventory distribution system with several regional sides branches. Under the continuous review policy, each sales branch places an order to its supplier whenever on hand plus on order inventory falls on the order point, and the order quantity is received after elapsing a certain lead time. This research first shows the method how to apply the product with low lever of demand into the continuous review policy. For the application, we use an order level as the maximum level of inventory during an order cycle. Also we analyze the lost sales case as a customer behavior. Further we use variable demands and variable lead times for more realistic situation. Based on the above circumstances, the research mainly discusses those methods to decide the optimal order level, order point, and order quantity for each sales branch which guarantees the system wide goal level of service, while keeping the minimum level of the system wide total inventory.