• Title/Summary/Keyword: Optimal Codes

Search Result 182, Processing Time 0.027 seconds

AN EFFICIENT CONSTRUCTION OF SELF-DUAL CODES

  • Kim, Jon-Lark;Lee, Yoonjin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.3
    • /
    • pp.915-923
    • /
    • 2015
  • Self-dual codes have been actively studied because of their connections with other mathematical areas including t-designs, invariant theory, group theory, lattices, and modular forms. We presented the building-up construction for self-dual codes over GF(q) with $q{\equiv}1$ (mod 4), and over other certain rings (see [19], [20]). Since then, the existence of the building-up construction for the open case over GF(q) with $q=p^r{\equiv}3$ (mod 4) with an odd prime p satisfying $p{\equiv}3$ (mod 4) with r odd has not been solved. In this paper, we answer it positively by presenting the building-up construction explicitly. As examples, we present new optimal self-dual [16, 8, 7] codes over GF(7) and new self-dual codes over GF(7) with the best known parameters [24, 12, 9].

Optimization of Unequal Error Protection Rateless Codes for Multimedia Multicasting

  • Cao, Yu;Blostein, Steven D.;Chan, Wai-Yip
    • Journal of Communications and Networks
    • /
    • v.17 no.3
    • /
    • pp.221-230
    • /
    • 2015
  • Rateless codes have been shown to be able to provide greater flexibility and efficiency than fixed-rate codes for multicast applications. In the following, we optimize rateless codes for unequal error protection (UEP) for multimedia multicasting to a set of heterogeneous users. The proposed designs have the objectives of providing either guaranteed or best-effort quality of service (QoS). A randomly interleaved rateless encoder is proposed whereby users only need to decode symbols up to their own QoS level. The proposed coder is optimized based on measured transmission properties of standardized raptor codes over wireless channels. It is shown that a guaranteed QoS problem formulation can be transformed into a convex optimization problem, yielding a globally optimal solution. Numerical results demonstrate that the proposed optimized random interleaved UEP rateless coder's performance compares favorably with that of other recently proposed UEP rateless codes.

Development of a CAD-based General Purpose Optimal Design and Its Application to Structural Shape for Fatigue Life (캐드 기반 범용 최적설계 시스템 개발 및 피로수명을 위한 구조형상최적설계에의 응용)

  • Kwak, Byung-Man;Yu, Yong-Gyun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1340-1345
    • /
    • 2003
  • In this paper, an integrated optimal design software system for structural components has been developed which interfaces existing commercial codes for CAD, CAE and Optimization. They include specialized optimal design software codes such as iSIGHT and VisualDOC, optimization module imbedded in CAD software developed by CAD developers, and optimal design software systems based on API of commercial CAD software. The advantages of the CAD imbedded optimal design approach and those of specialized optimal design software are taken to develop the system. The user defines optimal design formulation in the user interface for problem definition in the CAD control stage, where design variables are directly selectable from the CAD model and various properties and performance functions defined. The commercial CAD codes, Open I-DEAS are used for the development. The resulting software is minimally connected to CAD and CAE systems while keeping maximum independence from each other. This assures flexibility and freedom for problem definition. Fatigue life optimization is taken as a nontrivial application area. As a specific example, the shape design of a knuckle part of an automobile is performed, where the minimum fatigue life over the material domain in terms of the number of cycles of a curb strike are maximized under the constraint of not exceeding the current mass. The fatigue life has been improved by four times of the initial life. The developed software is illustrated to maintain the advantages of existing optimal design software systems while improving independency and flexibility.

  • PDF

IR-RBT Codes: A New Scheme of Regenerating Codes for Tolerating Node and Intra-node Failures in Distributed Storage Systems

  • Bian, Jianchao;Luo, Shoushan;Li, Wei;Zha, Yaxing;Yang, Yixian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.5058-5077
    • /
    • 2019
  • Traditional regenerating codes are designed to tolerate node failures with optimal bandwidth overhead. However, there are many types of partial failures inside the node, such as latent sector failures. Recently, proposed regenerating codes can also repair intra-node failures with node-level redundancy but incur significant bandwidth and I/O overhead. In this paper, we construct a new scheme of regenerating codes, called IR-RBT codes, which employs intra-node redundancy to tolerate intra-node failures and serve as the help data for other nodes during the repair operation. We propose 2 algorithms for assigning the intra-node redundancy and RBT-Helpers according to the failure probability of each node, which can flexibly adjust the helping relationship between nodes to address changes in the actual situation. We demonstrate that the IR-RBT codes improve the bandwidth and I/O efficiency during intra-node failure repair over traditional regenerating codes but sacrifice the storage efficiency.

QUANTUM CODES FROM CYCLIC CODES OVER F4 + vF4

  • OZEN, MEHMET;ERTUNC, FAIK CEM;INCE, HALIT
    • Journal of applied mathematics & informatics
    • /
    • v.34 no.5_6
    • /
    • pp.397-404
    • /
    • 2016
  • In this work, a method is given to construct quantum codes from cyclic codes over F4 + vF4 which will be denoted as R throughout the paper, where v2 = v and a Gray map is defined between R and where F4 is the field with 4 elements. Some optimal quantum code parameters and others will be presented at the end of the paper.

Approaching Near-Capacity on a Multi-Antenna Channel using Successive Decoding and Interference Cancellation Receivers

  • Sellathurai, Mathini;Guinand, Paul;Lodge, John
    • Journal of Communications and Networks
    • /
    • v.5 no.2
    • /
    • pp.116-123
    • /
    • 2003
  • In this paper, we address the problem of designing multirate codes for a multiple-input and multiple-output (MIMO) system by restricting the receiver to be a successive decoding and interference cancellation type, when each of the antennas is encoded independently. Furthermore, it is assumed that the receiver knows the instantaneous fading channel states but the transmitter does not have access to them. It is well known that, in theory, minimummean- square error (MMSE) based successive decoding of multiple access (in multi-user communications) and MIMO channels achieves the total channel capacity. However, for this scheme to perform optimally, the optimal rates of each antenna (per-antenna rates) must be known at the transmitter. We show that the optimal per-antenna rates at the transmitter can be estimated using only the statistical characteristics of the MIMO channel in time-varying Rayleigh MIMO channel environments. Based on the results, multirate codes are designed using punctured turbo codes for a horizontal codedMIMOsystem. Simulation results show performances within about one to two dBs of MIMO channel capacity.

Packet Size Optimization for Improving the Energy Efficiency in Body Sensor Networks

  • Domingo, Mari Carmen
    • ETRI Journal
    • /
    • v.33 no.3
    • /
    • pp.299-309
    • /
    • 2011
  • Energy consumption is a key issue in body sensor networks (BSNs) since energy-constrained sensors monitor the vital signs of human beings in healthcare applications. In this paper, packet size optimization for BSNs has been analyzed to improve the efficiency of energy consumption. Existing studies on packet size optimization in wireless sensor networks cannot be applied to BSNs because the different operational characteristics of nodes and the channel effects of in-body and on-body propagation cannot be captured. In this paper, automatic repeat request (ARQ), forward error correction (FEC) block codes, and FEC convolutional codes have been analyzed regarding their energy efficiency. The hop-length extension technique has been applied to improve this metric with FEC block codes. The theoretical analysis and the numerical evaluations reveal that exploiting FEC schemes improves the energy efficiency, increases the optimal payload packet size, and extends the hop length for all scenarios for in-body and on-body propagation.

Analysis of CRC-p Code Performance and Determination of Optimal CRC Code for VHF Band Maritime Ad-hoc Wireless Communication (CRC-p 코드 성능분석 및 VHF 대역 해양 ad-hoc 무선 통신용 최적 CRC 코드의 결정)

  • Cha, You-Gang;Cheong, Cha-Keon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.6A
    • /
    • pp.438-449
    • /
    • 2012
  • This paper presents new CRC-p codes for VHF band maritime wireless communication system based on performance analysis of various CRC codes. For this purpose, we firstly describe the method of determination of undetected error probability and minimum Hamming distance according to variation of CRC codeword length. By using the fact that the dual code of cyclic Hamming code and primitive BCH code become maximum length codes, we present an algorithm for computation of undetected error probability and minimum Hamming distance where the concept of simple hardware that is consisted of linear feedback shift register is utilized to compute the weight distribution of CRC codes. We also present construction of transmit data frame of VHF band maritime wireless communication system and specification of major communication parameters. Finally, new optimal CRC-p codes are presented based on the simulation results of undetected error probability and minimum Hamming distance using the various generator polynomials of CRC codes, and their performances are evaluated with simulation results of bit error rate based on the Rician maritime channel model and ${\pi}$/4-DQPSK modulator.

A Study of Ordering Sphere Decoder Class for Space-Time Codes

  • Pham, Van-Su;Mai, Linh;Kabir, S.M. Humayun;Yoon, Gi-Wan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.567-571
    • /
    • 2008
  • In this paper, an overview on the ordering sphere decoder (SD) class for space-time codes (STC) will be presented. In SDs, the ordering techniques are considered as promising methods for reducing complexity by exploiting a sorted list of candidates, thus decreasing the number of tested points. First, we will present the current state of art of SD with their advantages and disadvantages. Then, the overview of simply geometrical approaches for ordering is presented to address the question to overcome the disadvantages. The computer simulation results shown that, thanks to the aid of ordering, the ordering SDs can achieve optimal bit-error-rate (BER) performance while requiring the very low complexity, which is comparable to that of linear sub-optimal decoders.

  • PDF

Redundancy Minimizing Techniques for Robust Transmission in Wireless Networks

  • Kacewicz, Anna;Wicker, Stephen B.
    • Journal of Communications and Networks
    • /
    • v.11 no.6
    • /
    • pp.564-573
    • /
    • 2009
  • In this paper, we consider a wireless multiple path network in which a transmitting node would like to send a message to the receiving node with a certain probability of success. These two nodes are separated by N erasure paths, and we devise two algorithms to determine minimum redundancy and optimal symbol allocation for this setup. We discuss the case with N = 3 and then extend the case to an arbitrary number of paths. One of the algorithms minimum redundancy algorithm in exponential time is shown to be optimal in several cases, but has exponential running time. The other algorithm, minimum redundancy algorithm in polynomial time, is sub-optimal but has polynomial worstcase running time. These algorithms are based off the theory of maximum-distance separable codes. We apply the MRAET algorithm on maximum-distance separable, Luby transform, and Raptor codes and compare their performance.