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Energy consumption is a key issue in body sensor 
networks (BSNs) since energy-constrained sensors 
monitor the vital signs of human beings in healthcare 
applications. In this paper, packet size optimization for 
BSNs has been analyzed to improve the efficiency of 
energy consumption. Existing studies on packet size 
optimization in wireless sensor networks cannot be 
applied to BSNs because the different operational 
characteristics of nodes and the channel effects of in-body 
and on-body propagation cannot be captured. In this 
paper, automatic repeat request (ARQ), forward error 
correction (FEC) block codes, and FEC convolutional 
codes have been analyzed regarding their energy efficiency. 
The hop-length extension technique has been applied to 
improve this metric with FEC block codes. The theoretical 
analysis and the numerical evaluations reveal that 
exploiting FEC schemes improves the energy efficiency, 
increases the optimal payload packet size, and extends the 
hop length for all scenarios for in-body and on-body 
propagation. 
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I. Introduction 

A body sensor network (BSN) is a radio frequency-based 
wireless networking technology that interconnects tiny nodes 
with sensor or actuator capabilities in, on, or around a human 
body [1]. We distinguish between implant and body surface 
nodes. Implant nodes are placed inside the human body, 
immediately below the skin or further deeper inside the body 
issue. Body surface nodes are placed on the surface of the 
human skin or at most two centimeters away from the body. 
Applications of BSNs are closely related to the healthcare 
domain, especially for continuous monitoring and logging vital 
parameters of patients suffering from chronic diseases. Based 
on implant and body surface devices, the following 
applications have been developed. First, BSNs may be used in 
implantable devices, such as pacemakers, implantable cardiac 
defibrillators (ICDs), implantable insulin pumps, and bladder 
control devices. Second, BSNs may be used in body surface 
devices, such as physiological sensors able to measure blood 
pressure, glucose monitoring, body temperature, blood oxygen, 
signals related to respiratory inductive plethysmography (RIP), 
and electroencephalography (EEG) [2]. 

 This technology also enables the implementation of sports, 
military, or security applications. 

Although BSNs have a similar architecture to wireless 
sensor networks (WSNs), a smaller scale and a different type 
and frequency are required for human body monitoring [3]. 
Since WSNs are not ideally suited for this purpose, specific 
BSNs should be developed. In addition, BSN and WSN nodes 
have different operational characteristics, such as sensing, 
signal processing, communication, storage, feedback control, 
and energy harvesting [2]. Communication in BSNs is 
challenged by human movements or posture changes in a time 
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varying and sometimes highly dynamic environment. Body 
shadowing [2] appears when some propagation directions 
between the transmitting and receiving antennas are obstructed.  

Energy consumption is a fundamental issue in BSNs since 
energy-constrained sensors monitor the vital signs of human 
beings in healthcare applications. Therefore, BSNs must 
operate properly and autonomously for long periods of time 
without battery recharge or replacement [4]. Advances in 
increased battery duration, power scavenging, and reduced 
energy consumption are eagerly awaited, especially regarding 
implantable sensors [3].  

In this paper, packet size optimization for BSNs has been 
analyzed to improve the efficiency of energy consumption. 
Existing studies on packet size optimization in sensor networks 
cannot be applied to BSNs because the different operational 
characteristics of BSN nodes (sensing, signal processing, 
communication, storage, feedback control, and energy 
harvesting) [2] and the channel effects of in-body and on-body 
propagation are not considered. Automatic repeat request 
(ARQ), forward error correction (FEC) block codes named 
Bose, Ray-Chaudhuri, and Hocquenghem (BCH) and Reed-
Solomon (RS), and FEC convolutional codes have been 
investigated regarding their energy efficiency. The hop-length 
extension technique has been applied to improve this metric 
with FEC block codes. Hop-length extension means that for 
the same transmission power, FEC block codes can reach 
longer distances by increasing the transmission ranges. 
Different scenarios for in-body and on-body propagation have 
been considered. To the best of our knowledge, this is the first 
paper that analyzes packet size optimization in BSNs based on 
the energy efficiency and examines the effects of error control 
schemes under different propagation phenomena on this metric. 
The theoretical analysis and the numerical evaluations reveal 
that exploiting FEC schemes improves the energy efficiency, 
increases the optimal payload packet size, and extends the hop 
length for all scenarios and propagation types in BSNs. 

The paper is structured as follows. In section II, we discuss 
the related work on packet size optimization and error control 
schemes. In section III, we analyze our system model. In 
section IV, the channel model for BSNs is described. In section 
V, the energy consumption, the expressions of the energy 
efficiency, and the optimal packet size for each error control 
scheme are derived. In section VI, our numerical results are 
shown. Finally, the paper is concluded in section VII.  

II. Related Work 

Packet size optimization has been analyzed in WSNs. In [5], 
the optimal packet size that maximizes the energy efficiency is 
determined for different error control schemes in WSNs. In [6], 

packet size optimization has been analyzed for wireless 
terrestrial, underwater, and underground sensor networks. In 
[7], the impact of error control schemes on end-to-end energy 
consumption and latency has been studied for multihop sensor 
networks. However, all these analyses cannot be applied to 
BSNs due to the different operational characteristics of BSN 
nodes [2] and the channel effects of in-body [8] and on-body 
propagation [9]. The structure of the human body is complex 
and consists of different tissues, each with its own permittivity 
and conductivity. The different shape and proportions of fat and 
muscles of each human body is time-varying and affects 
electromagnetic propagation. Propagation depends also on the 
type of antennas and their position as well as on the body 
postures and movement. In addition, the channel characteristics 
for in-body and on-body sensor networks are different [8], [9]. 
In in-body sensor networks, signals propagate inside the 
human body and are affected by the body’s electrical properties. 
In on-body sensor networks, the resulting signal is a 
combination of surface waves, creeping waves, diffracted 
waves, scattered waves, and free space propagation [10]. In our 
paper, different scenarios for in-body and on-body propagation 
have been considered. 

Furthermore, in [7], the effects of the error controls schemes 
are analyzed for multihop communication. In [6], the optimal 
packet size for different objective functions such as energy 
consumption has also been found in multihop WSNs. In our 
paper, we analyze the effects of the error controls schemes for 
single-hop communication since this is the transmission type 
typical for BSNs. Besides, in [6] and [7], only ARQ and FEC 
block codes are considered. In our paper, convolutional codes 
have also been analyzed. 

Error control techniques have been studied in BSNs. The 
benefits of combining ARQ with listen before talk (LBT) to 
improve the network performance are shown in [11]. The 
throughput and packet error rate have been analyzed in [12]  
with RS (63,55) as Reed-Solomon code and burst errors. 
However, in these works the effects of these error control 
schemes on the energy efficiency have not been studied. In our 
paper, we analyze and compare ARQ, FEC block, and FEC 
convolutional codes in terms of the energy efficiency.  

III. System Model Analysis 

We consider a BSN for healthcare monitoring (Fig. 1). In 
this architecture, implant or body surface sensors are used to 
monitor the physiological states of a person and transmit 
them towards a gateway located at the body surface using 
single-hop communication. Finally, the gateway transmits 
this data to a monitoring station, which forwards it towards 
the Internet. 
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Fig. 1. Architecture for body sensor network. 
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IV. Channel Model 

Propagation paths in BSNs can experience small and large 
scale fading. Small scale fading refers to the rapid changes of 
the amplitude and the phase of the received signal within a 
small local area due to small changes in the location of the on-
body device or body positions in a given short period of time 
[8]. Small-scale fading is caused by the constructive and 
destructive interference of the multipath components at the 
receiver [13] (for instance, reflections from objects nearby can 
change the multipath profile for an ultra-wide band (UWB) 
body channel). Large scale fading or shadowing refers to 
variations of the received power due to obstruction of the 
propagation paths [13]. We distinguish between the shadowing 
caused by i) the body movements (changing postures, such as 
bending or rolling over in bed) and/or movement of the 
antennas with respect to the body and shadowing caused by ii) 
the surrounding objects when the antennas are positioned in the 
body and are in an external node (for example, when a person 
moves to a different location in the same room).  

We assume that different measurements are carried out when 
the transmitter and receiver antennas on the body are moved to 
specific locations. Later on, the same measurements with the 
same locations for the antennas are repeated, but this time the 
person carrying the BSN changes his/her location in the room. 
At each antenna position in the body and at each location in the 
room, the attenuation is averaged over the different 
measurements to yield the large-scale path loss variations. This 
averaging mostly removes the effect of small-scale fading due 
to small changes in the user position around the room.  

The average path loss between the transmitting and the 
receiving antennas is usually expressed by [8] 

( ) 0 10
0

10 log ,dPL d PL n X
d σ

⎛ ⎞
= + +⎜ ⎟

⎝ ⎠
          (1) 

where PL0 is the path loss at a reference distance d0, n is the 
path loss exponent, and Xσ is the shadowing component, which 
is a Gaussian-distributed random variable with zero mean and 
standard deviation σ in dB, that is, Xσ.∼N(0,σ2). 

Three different scenarios are considered: 

1. In-body communication between an implant sensor and 
the gateway, 

2. On-body communication between a body surface sensor 
and the gateway (line-of-sight (LOS) channel), 

3. On-body communication between a body surface sensor 
and the gateway (non-line-of sight (NLOS) channel). 

In LOS propagation, electromagnetic waves travel in a 
straight line, whereas in NLOS propagation, radio transmission 
across a path is partially obstructed, for example, when waves 
propagate in the communication between back and torso.  

An in-body channel model and on-body channel models 
(both LOS propagation and NLOS propagation) are used for 
the first, second, and third scenarios, respectively. The 
parameter values for each channel model have been obtained 
from [8], [14], and [15] for the first, second, and third scenarios, 
respectively. They are listed in Table 1 of section VI. 

The received power at a distance d from the transmitter is 

( ) ( )R T ,P d P PL d= −                (2) 

where PT is the transmission power in dBm. 
Moreover, the signal to noise ratio (SNR) at the receiver is  

R n( ) ( ) ,d P d Pψ = −               (3) 

where Pn is the noise power in dBm. 
Next, we derive the expressions for bit error rate (BER) and 

packet error rate (PER) for the error control schemes. The 
modulation schemes have been selected: on-off keying (OOK) 
due to its low-power operation and binary phase shift keying 
(BPSK) due to its BER improvement [16]. 

The BER for OOK is given by 

OOK b N
b b 0

0 TX

1 1 , / ,
2 4

E B
p erfc E N

N v
ψ

⎛ ⎞
= =⎜ ⎟⎜ ⎟

⎝ ⎠
     (4) 

where ψ = 10ψdB(d,f)/10, BN is the noise bandwidth, and vTX is the 
data rate.  

The BER for BPSK is given by 

BPSK b N
b b 0

0 TX

1 , / .
2

E B
p erfc E N

N v
ψ

⎛ ⎞
= =⎜ ⎟⎜ ⎟

⎝ ⎠
      (5) 

Based on the bit error rate pb, the PER for the error control 
schemes can be calculated as follows.  

For ARQ, the CRC block code detection mechanism is 
deployed. Assuming detection of all packet errors, the PER of a 
single transmission for a packet of q bits is computed as 
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( ) ( )CRC
b1 1 .qPER q p= − −            (6) 

BCH and RS FEC block codes are represented by (n, k, t), 
where n is the block length, k is the payload length, and t is the 
error correcting capability in bits. For BCH and RS codes, the 
block error rate (BLER) is given by 

( ) ( )b b
1

, , 1 .
n

n ii

i t

n
BLER n k t p p

i
−

= +

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑         (7) 

Since a packet can be larger than the block length n, the PER 
for BCH and RS block codes is given by 

( ) ( )( )BC , , , 1 1 , , ,

q
k

PER q n k t BLER n k t

⎡ ⎤
⎢ ⎥⎢ ⎥

= − −     (8) 

where ⎡q/k⎤ is the number of blocks required to send q bits.  
For FEC convolutional codes, the PER of a single 

transmission for a packet of q bits is given by 

( ) ( )
cconv

b, , 1 1 ,

q
R

PER q n k p

⎡ ⎤
⎢ ⎥
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= − −          (9) 

where pb is the bit error probability of an encoded data packet 
of length ⎡q/Rc⎤ and code rate Rc = k/n. 

V. Packet Size Optimization 

In this section, the energy consumption is analyzed and the 
expressions of the energy efficiency and optimal packet size for 
each error control scheme are derived. 

1. Energy Analysis 

We are interested in analyzing the energy consumed when a 
sensor node i in a BSN sends data towards the gateway j using 
single-hop communication. The energy consumed is  

comm TX RX ,E E E= +            (10) 

where ETX is the energy consumed by the transmitter (node i), 
and ERX is the energy consumed by the receiver (node j).  

For a successful packet transmission with ARQ, a node 
needs to receive an ACK. ETX is given for ARQ as  

ARQ
TX, D RX, ATX ,E E E= +           (11) 

where ETX,u  is the packet transmission energy, D and A refer to 
DATA and ACK packets, respectively.  

We use a simple energy consumption model [17]. ETX, u can 
be computed as  

TX, TX-elec
TX

,T
u

P
E E u u

v
= ⋅ + ⋅         (12) 

where ETX-elec refers to the energy per bit needed by transmitter 
electronics and digital processing, PT refers to the output 
transmit power (amount of energy spent in the RF amplifier), 
vTX refers to the data rate, and u refers to the transmitted packet 
size. For ARQ, u refers to the data unit length. 

ERX, u can be computed as 

RX, RX-elec ,uE E u= ⋅             (13) 

where ERX-elec refers to the energy per bit needed by the receiver 
electronics. 

ETX is given for FEC as 
FEC
TX TX, D.E E=                  (14) 

ETX, D is computed using (12) for FEC block codes and for 
FEC convolutional codes. A block code is represented by (n, k, 
t), where n is the block length, k is the payload length, and t is 
the error correcting capability in bits. Accordingly, the packet 
size u for block codes in (12) should be ⎡(q/k)·n⎤, where q 
refers to the data unit length, and ⎡.⎤ is the ceiling function. 
Convolutional codes are represented by (n, k, m), where n is the 
number of output bits, k is the number of input bits, and m is 
the number of memory registers. Accordingly, u in (12) should 
be ⎡q/Rc⎤, where Rc refers to the code rate, and is given by   
Rc = k/n. 

Using the same approach, the energy consumption of the 
receiver mode ERX is given as follows for ARQ and FEC: 

ARQ
RX, D TX, ARX ,E E E= +           (15) 

FEC
RX RX, D DEC, D ,E E E= +           (16) 

where EDEC, D is the energy consumption of decoding for a FEC 
block code with length n and a t error correcting capability. It is 
given by [5] 

( )( )2
DEC, BC add mult2 2 ,E nt t E E= + +        (17) 

where Eadd and Emult are the energy consumption for addition 
and multiplication, respectively, of field elements in the Galois 
field GF(2m), m=⎣log2n+1⎦. Therefore, in (16), the decoding 
energy for a data unit, EDEC, D, is given by EDEC, D = EDEC, BC·⎡q/k⎤. 
The energy consumption of decoding for a FEC convolutional 
code can be computed according to [17].  

2. Energy Efficiency for In-Body Sensor Networks 

Next, the energy efficiency with the different error control 
schemes for in-body sensor networks is introduced. 

A. Energy Efficiency with ARQ 

The energy efficiency represents the useful fraction of the 



ETRI Journal, Volume 33, Number 3, June 2011 Mari Carmen Domingo   303 

total energy consumption in a communication link between 
sensors.  

For ARQ, the CRC block code detection mechanism is 
deployed. Equations (12) and (13) can be rewritten for a 
transmitted packet as 

( )

( )

T
TX, D RX, D RX-elec TX-elec

TX

,

P
E E E E h s

v

x h s

⎛ ⎞
+ = + + ⋅ +⎜ ⎟

⎝ ⎠
= ⋅ +

 
(18)

 

where s refers to the payload length, and h refers to the header 
length of the transmitted packet. 

The energy efficiency with ARQ can be defined as 

( )
( ) RX, A TX, A

1 ,x sPER
x h s E E

μ ⋅
= − ⋅

⋅ + + +
    (19) 

where PER is given by (6). 
Our task is to maximize μ with respect to the payload length. 

It can be shown that there exists a maximum for the 
optimization function. The optimal payload size for ARQ is  

( )
ARQ 2
opt

b

1 4 ,
2 ln 1

fs f f
p

= − + −
−

         (20) 

where RX, A TX, AE E
f h

x
+

= + . 

B. Energy Efficiency with FEC Block Codes 

The energy efficiency with FEC block codes is defined as 

( )
( )

DEC, D

1 ,

sx n
kPER

h s
x n E

k

δ

⎡ ⎤⋅ ⋅⎢ ⎥⎢ ⎥= − ⋅
⎡ ⎤+

⋅ ⋅ +⎢ ⎥
⎢ ⎥⎢ ⎥

       (21) 

where PER is given by (7) and (8). The denominator of (21) 
represents the total energy consumption for a transmitted 
packet (each packet is divided into (h + s)/k blocks of length n). 
The whole packet (h + s) is considered. The numerator of (21) 
represents the useful energy, that is, the energy spent to send 
and receive the useful part of the packet (s) as a group of     
(h+s)/k blocks of length n when these bits are correctly 
received. The numerator is multiplied by (1 – PER), which 
represents the reliability that the packet is properly received. 

The optimal payload length for FEC block codes that 
maximizes the energy efficiency is  

( )
BC 2
opt

1 4 ,
2 ln 1

fks f f
BLER

= − + −
−

      (22) 

where DEC, DE kf h
x n

⎡ ⎤= + ⋅ ⎢ ⎥⎢ ⎥
 and the BLER is given by (7). 

C. Energy Efficiency with FEC Convolutional Codes 

The energy efficiency with FEC convolutional codes is 

( ) c

DEC, D
c

1 ,

sx
R

PER
s hx E
R

α

⎡ ⎤
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⎡ ⎤+
⋅ +⎢ ⎥
⎢ ⎥

       (23) 

where the PER is given by (9). 
The optimal payload length for FEC convolutional codes 

that maximizes the energy efficiency is  

( )
CC 2 c
opt

b

41 ,
2 ln 1

fR
s f f

p
= − + −

−
         (24) 

where c DEC, DR E
f h

x
⋅

= + . 

3. Energy Efficiency for On-Body Sensor Networks 

Next, energy efficiency with different error control schemes 
for on-body sensor networks is introduced. In on-body sensor 
networks, the fading envelope changes continuously in 
accordance with body motion. In mobile body sensor networks, 
the normalized Doppler bandwidth is small; therefore, the 
fading process is highly correlated causing burst errors that can 
last for tens or even hundreds of milliseconds. In this case, FEC 
codes would not be efficient. The probability of correct packet 
transmission in fading channels depends on the number of 
fades during the transmission time, burst-error duration, and 
error-correcting capability of channel coding. Therefore, in 
order to determine the energy efficiency with ARQ, FEC block 
codes or FEC convolutional codes, equations (19), (21), and 
(23) should be multiplied by the probability of correct packet 
transmission in fading channels ps, which is given by [18]: 

if_avrg
1

if_avrg if_avrg

T
t

s
T Tp e E

t t

− ⎛ ⎞ ⎛ ⎞
= − ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
,        (25) 

where ( ) 1
1

t

y
E y e t dt

∞ − −= ∫ . tif_avrg refers to the mean of the  

interfade duration (the period of time between two successive 
fades), and T refers to the transmission time of the packet.  

VI. Results 

We study the performance of ARQ and FEC codes with 
respect to the energy efficiency in BSNs via numerical 
evaluations.  

We analyze the effects of the proposed techniques for in-
body and on-body sensor networks. The channel models  
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Table 1. Parameter values. 

Parameter Value 

Overhead size 80 bits 
ACK size 8 bytes 

Transmission power PT 
In-body: –10 dBm 
On-body: –12 dBm 

Noise power Pn –100 dBm 

d0: 5 cm 

PL0: 49.81 dB 

n: 4.22 

Channel model implant 
(near surface) to gateway 

for f : 402 to 405 MHz 
σS: 6.81 dB 

LOS NLOS 

f = 2.45 GHz f = 3.1 GHz 

d0: 10 cm d0: 10 cm 

PL0: 35.2 dB PL0: 48.4 dB 

n: 3.11 n: 5.9 

Channel model body 
surface to gateway  

σS: 6.1 dB σS: 5.0 dB 

Data rate 
In-body: 800 kbps 
On-body: 2 Mbps 

ETX-elec 
In-body: 18.75 nJ/bit 
On-body: 11.25 nJ/bit 

ERX-elec 
In-body: 18.75 nJ/bit 
On-body: 11.25 nJ/bit 

Eadd 
3.3×10-14m W/Hz,  

where m=⎣log2 n+1⎦ 

Emult 
3.7×10-14m3 W/Hz,  

where m=⎣log2 n+1⎦ 

 

considered appear in section IV. The parameters used in our 
evaluation are listed in Table 1. They follow the architecture of 
the Zarlink ZL70101 [19] and the Nordic nRF24L01+ [20] 
ultra-low power chip transceivers for in-body and on-body 
sensor networks, respectively. We use as FEC block codes the 
BCH codes BCH (127, 8, 31), BCH (127, 125, 1), BCH (127, 
120, 1), BCH (127, 120, 10), BCH (127, 120, 5), BCH (127, 
15, 27), BCH (127, 22, 23), BCH (31, 11, 5), BCH (31, 11, 
15), BCH (31, 21, 5), and the RS code RS (63, 55, 4). They 
are shortened codes with mother codes BCH (152, 33, 31), 
BCH (152, 150, 1), BCH (152, 145, 1), BCH (152, 145, 10), 
BCH (152, 145, 5), BCH (152, 40, 27), BCH (152, 47, 23), 
BCH (56, 36, 5), BCH (56, 36, 15), BCH (56, 46, 5), and RS 
(79, 65, 7), respectively. We use a FEC convolutional code 
with code rate 1/2. However, other FEC schemes could also 
be used in our framework yielding similar performance. Our 
numerical results for a mobile wireless on-body sensor 
network with a relative body movement velocity of 3.5 km/h 
show a resulting average fade duration of 75.1 ms and an  

 

Fig. 2. BER vs. distance for on-body sensor networks (LOS and
NLOS channel models). 
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Fig. 3. BER vs. distance for in-body sensor networks. 
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average interface duration of 46.7 ms. 

1. Bit Error Rate  

We analyze the effects of different modulation schemes on 
the BER for on-body and in-body sensor networks. In Fig. 2 
the BER is shown as a function of the distance between the 
body surface node and the gateway for the BPSK and OOK 
modulations (on-body sensor network). Different curves for the 
LOS and NLOS channel models have been depicted assuming 
the validity of the models at these distances. The NLOS 
channel model supports lower hop-length extensions than the 
LOS channel model because the path loss is higher as the path 
is partially obstructed, for example, when waves propagate in 
the communication between the back and torso. For a 
particular BER, the hop length is extended more using the 
BPSK than the OOK modulation for both channel models. For 
a particular hop distance, the BER is lower for BPSK than for 
OOK modulation (LOS or NLOS propagation). For instance, 
for a distance of 40 cm, the BER is 92.7% lower for the BPSK 
than for the OOK modulation with the NLOS channel model. 

In Fig. 3, the BER is shown as a function of the distance 
between the implant node and the gateway for the BPSK and 
OOK modulations (in-body sensor network). Again, the BPSK 



ETRI Journal, Volume 33, Number 3, June 2011 Mari Carmen Domingo   305 

modulation results in larger hop-length extension than OOK. 
For a target BER of 10-3, the hop length is extended to 30.4%  
using BPSK instead of OOK modulation. 

2. Payload Length 

We investigate the effects of packet size optimization on the 
energy efficiency for the error control schemes. In Fig. 4 and 
Fig. 5, the energy efficiency for an in-body and on-body sensor 
network, respectively, are shown as a function of the payload 
length for ARQ and the convolutional code with Rc=1/2. The 
BER values are 10-3 and 10-5. The energy efficiency is lower 
and decays faster with the increase of the payload length for 
on-body than for in-body sensor networks due to the 
continuous change of fading envelope. The optimal payload 
length for in-body and on-body sensor networks with respect to 
different BER values is shown in Table 2. The payload length 
values are smaller for on-body sensor networks because, as the 
packet size (and packet time duration) is longer, the probability 
that the packet falls in the faded duration is larger. In Figs. 4 
and 5, the energy efficiency and the optimal payload length 
increase with decreasing BER. With ARQ and the 
convolutional code with Rc=1/2 for a payload length of 1,000 
bits, the energy efficiency is 65.7% and 88.2% lower for a 
BER of 10-3 in comparison with a BER of 10-5, respectively 
(in-body sensor network). For ARQ and the convolutional 
code with Rc=1/2, the optimal payload length (in-body sensor 
network) is 91.6% and 91.7% lower for a BER of 10-3 

compared to a BER of 10-5, respectively. For the convolutional 
code with Rc=1/2, the optimal payload length (on-body sensor 
network) is 79.5% lower for a BER of 10-3 compared to a BER 
of 10-5. 

For a given BER, the energy efficiency drops abruptly for 
payloads smaller than the optimal length due to the higher 
overhead of smaller packets. This effect is especially noticeable 
in the case of ARQ. However, the energy efficiency decreases 
slowly for payloads larger than the optimal length. This effect 
is more perceptible for in-body sensor networks, lower bit error 
rates (better channel conditions), and in the case of ARQ. 
Therefore, we conclude that with payloads significantly higher 
than the optimal payload length, still near-optimal energy 
efficiency can be obtained. The optimal payload length in an 
in-body sensor network is 44.3% (46.6% in an on-body sensor 
network) lower for the convolutional code with Rc=1/2 
compared to ARQ and a BER of 10-3. Convolutional codes 
show the worst performance compared to ARQ since their 
optimal payload sizes are significantly smaller, and the energy 
efficiency decreases more quickly for payloads larger than the 
optimal length. The energy efficiency and the payload length 
increase with an increasing code rate. Convolutional codes  

 

Fig. 4. Energy efficiency vs. payload length in in-body sensor
network for ARQ and convolutional codes. 
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Fig. 5. Energy efficiency vs. payload length in on-body sensor
network for ARQ and convolutional codes. 
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Table 2. Optimal payload length for ARQ and FEC convolutional 
codes. 

Optimal payload length (bits) 

ARQ FEC conv. code with Rc=1/2BER

In-body On-body In-body On-body 

10–3 314 307 175 164 

10–4 1,130 1,001 639 401 

10–5 3,723 1,601 2,117 801 

 

 
with a low code rate have higher PER, which affects energy 
efficiency. 

In Figs. 6 and 7, the energy efficiency for an in-body and an 
on-body sensor network, respectively, are shown as a function 
of the packet payload length for FEC block codes. The optimal 
packet payload lengths for BCH (127, 125, 1) and BCH (127, 
120, 1) for in-body and on-body sensor networks with respect 
to different BER values are illustrated in Table 3. Again, the 
energy efficiency and the optimal packet payload size increase 
with decreasing BER.  

FEC block codes can achieve better energy efficiencies in  
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Fig. 6. Energy efficiency vs. payload length in in-body sensor
network for FEC block codes. 

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000
0.70

Payload length (bits) 

En
er

gy
 e

ffi
ci

en
cy

 

BCH(127,8,31), BER=10-3

BCH(127,125,1), BER =10-3 

BCH(127,120,10), BER =10-3 

BCH(127,120,1), BER =10-3 

BCH(127,120,5), BER =10-3

0.75

0.80

0.85

0.90

0.95

1.00

 
 

 

Fig. 7. Energy efficiency vs. payload length in on-body sensor
network for FEC block codes. 
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Table 3. Optimal payload length for FEC block codes. 

Optimal payload length (bits) 

FEC block code    
BCH (127, 125, 1) 

FEC block code  
BCH (127, 120, 1) 

BER 

In-body On-body In-body On-body 

10–3 1,133 1,001 1,110 801 

10–4 11,312 1,382 11,084 1,360 

10–5 1.13×105 1,396 1.11×105 1,374 

 

 
comparison with the other error control schemes. For the same 
block length n and error correcting capability t, the energy 
efficiency and the optimal packet payload size increase with 
increasing payload length k of the block code because the PER 
is decreased. For an in-body sensor network with BCH (127, 
125, 1), the optimal packet payload size is 1.8% larger compared 
to BCH (127, 120, 1) and a BER of 10-5. For the same block 
length n and payload length k, when the error correcting 
capability t is increased, the PER of the code is decreased, but 

the energy consumption of decoding is increased. The tradeoff 
between both parameters (PER and energy consumption of 
decoding) affects the energy efficiency. For very low error 
correcting capabilities, the PER of the code is increased, but the 
energy consumption in decoding is decreased. In this case, the 
energy efficiency decreases because the increase in the PER 
prevails over the decrease in the energy consumption of 
decoding. Therefore, for BCH (127, 120, 1), the energy 
efficiency is 20.3% lower than with BCH (127, 120, 5) for a 
payload length of 3,600 bits and a BER of 10-3 (in-body sensor 
networks). For higher error correcting capabilities, the PER of 
the code is decreased, but the energy consumption in decoding 
is increased. In this case, the energy efficiency decreases 
because the increase in the energy consumption of decoding 
prevails over the decrease in the PER. Thus, for BCH (127, 
120, 10), the energy efficiency is 0.39% lower than with BCH 
(127, 120, 5) for a payload length of 3,600 bits and a BER of 
10-3 (in-body sensor networks). For the same error correcting 
capability t, when the block length n is decreased, the energy 
efficiency and the optimal packet payload size are improved 
because the PER as well as the energy consumption of 
decoding are decreased. The energy efficiency as well as the 
payload length values are lower for on-body compared to in-
body sensor networks.  

3. Hop-Length Extension 

Next, we analyze how to extend the hop length between 
each sensor node and the gateway maintaining good energy 
efficiency. The energy efficiency as a function of the distance 
for a payload length of 2,000 bits is shown in Figs. 8, 9, and 10 
for in-body sensor networks [8], on-body sensor networks 
(LOS channel model [14]), and on-body sensor networks 
(NLOS channel model [15]), respectively. At moderate hop 
distances, a payload size closer to the optimal payload is 
preferable since the energy efficiency is higher (Fig. 8). For a 
distance between the implant sensor inside the skin and the 
gateway of 14 mm, ARQ shows the best improvement when 
the payload length is modified. With a payload length of 2,000 
bits, the energy efficiency is 31.7% higher than with a payload 
length of 350 bits. However, the energy efficiency is degraded 
more quickly for the payload of 2,000 bits as the distance is 
increased. On the contrary, for the payload size of 350 bits, the 
energy efficiency degradation is more gradual.  

For in-body sensor networks, the energy efficiency with the 
ARQ scheme is the lowest. However, for on-body sensor 
networks (LOS and NLOS channel models), the energy 
efficiency with the convolutional code with Rc=1/2 is the 
lowest since the probability of correct transmission in fading 
channels is lower. With the convolutional code with Rc=1/2 and  
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Fig. 8. Energy efficiency vs. distance for in-body sensor networks.

0 5 10 15 20 25 30 35 40 45
Distance (cm) 

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

En
er

gy
 e

ffi
ci

en
cy

 

ARQ, s=2000 bits (BPSK) 
RS(63,55,4), s=2000 bits (BPSK) 
Conv. code with Rc=1/2, s=2000 bits (BPSK) 
ARQ, s=350 bits (BPSK) 
RS(63,55,4), s=350 bits (BPSK) 
Conv. code with Rc =1/2, s=350 bits (BPSK) 

 
 

 

Fig. 9. Energy efficiency vs. distance for on-body sensor networks
(LOS). 
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Fig. 10. Energy efficiency vs. distance for on-body sensor networks
(NLOS). 
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a payload of 2000 bits, the energy efficiency is 7.6% and 6.2% 
lower than RS (63, 55, 4) and ARQ, respectively, for on-body 
sensor networks (LOS) with BPSK modulation and a distance 
between body surface sensor and gateway of 40 cm (Fig. 9).  

FEC block codes are able to maintain high-energy efficiency 
values over longer distances because the hop-length extension 
technique is applied. This means that for the same transmission 
power, FEC block codes can reach longer distances (increase 
the transmission ranges). For an energy efficiency of 0.80 
(good value), the hop length has been extended for RS (63, 55,  

 

Fig. 11. Energy efficiency vs. distance for in-body sensor networks.
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Fig. 12. Energy efficiency vs. distance for on-body sensor
networks (LOS). 
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Fig. 13. Energy efficiency vs. distance for on-body sensor networks
(NLOS). 
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4) using a payload length of 2,000 bits and BPSK modulation 
to 35 cm for in-body sensor networks, to 400 cm for on-body 
sensor networks (LOS) (assuming the validity of the channel 
model at this distance), and to 41 cm for on-body sensor 
networks (NLOS). With FEC block codes and BPSK 
modulation, the hop length is extended more than with OOK 
modulation because the BER is lower, as shown in Figs. 2 and 
3. For an energy efficiency of 0.8, the hop length for RS (63, 55, 
4) with BPSK modulation is 56.9% and 28.1% larger in 
comparison with OOK modulation for the LOS and NLOS 
channel models (on-body communication), respectively, 
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assuming the validity of the channel models at these distances.  
Next, we study more carefully the relationship between the 

energy efficiency and the distance for FEC block codes since 
they result in higher extension of hop length. The energy 
efficiency is shown as a function of distance for in-body and 
on-body sensor networks (LOS and NLOS channel models) in 
Figs. 11, 12, and 13, respectively. For the same block length n 
and payload length k, the hop length is increased with the error 
correcting capability t of the code. For an energy efficiency of 
0.4, the hop length is increased 64.9%, 83.6%, and 38.5% with 
BCH (31, 11, 15) compared to BCH (31, 11, 5) for in-body and 
on-body sensor networks (LOS and NLOS channel models), 
respectively. The energy efficiency is increased for the same 
code length n and error correcting capability t when the 
payload length k is decreased. For a distance between the 
sensor and the gateway of 30 cm, the energy efficiency is 
increased 11.8%, 7.9%, and again 7.9% with BCH (31, 11, 5) 
compared to BCH (31, 21, 5) for in-body and on-body sensor 
networks (LOS and NLOS), respectively. The energy 
efficiency for in-body sensor networks is decreased when the 
block length n for the different FEC block codes is reduced. 
The energy efficiency values for on-body sensor networks are 
affected by the probability of correct packet transmission in 
fading channels, which diminishes when the ratio n/k is 
increased. In this case, the transmission time of the packets is 
increased because the payload length for each block code is 
reduced. BCH (31, 11, 15) extends the hop length the most. It 
has been extended for an energy efficiency of 0.45 to 60 cm for 
in-body sensor networks, 985 cm for LOS channel on-body 
sensor networks, and 70 cm for NLOS channel on-body sensor 
networks. These measurements assume the validity of the 
channel models at these distances. 

VII. Conclusion 

In this paper, packet size optimization based on the energy 
efficiency has been analyzed. The error control schemes ARQ, 
FEC block codes, and FEC convolutional codes have been 
investigated regarding this metric. The energy efficiency and 
the optimal payload length increase with decreasing BER for 
all error control schemes. Since the energy efficiency decreases 
slowly for payloads larger than the optimal length, with these 
payloads still near-optimal energy efficiency can be obtained. 
FEC block codes can achieve better energy efficiency in 
comparison with the other error control schemes. Since for the 
same block length n and payload length k, with increasing error 
correcting capability t, the PER of the FEC block code is 
decreased but the energy consumption of decoding is increased, 
moderate values of t result in higher energy efficiency and 
good payload packet size. The results show that the optimal 

packet length to improve the energy efficiency depends on the 
type of BSN (in-body or on-body sensor network). 

We have analyzed how to extend the hop length while 
maintaining good energy efficiency. At moderate hop distances, 
a payload size closer to the optimal is preferable since the 
energy efficiency is higher. For in-body sensor networks, the 
energy efficiency with the ARQ scheme is the lowest. 
However, for on-body sensor networks (LOS and NLOS 
channel models), the energy efficiency with the convolutional 
code with Rc = 1/2 is the lowest since the probability of correct 
transmission in fading channels is lower. With FEC block 
codes and BPSK modulation, the hop length is extended more 
than with OOK modulation because the BER is lower. FEC 
block codes are able to maintain high energy efficiency values 
over longer distances because the hop-length extension 
technique is applied. This means that for the same transmission 
power, FEC block codes can reach longer distances (increase 
the transmission ranges). We observe that for the same block 
length n and payload length k, the hop length is increased with 
the error correcting capability t of the code.  

An interesting direction for future research lies in evaluating 
the energy efficiency for other BSN topologies different from 
the single-hop star topology discussed in the paper. 
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