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AN EFFICIENT CONSTRUCTION OF SELF-DUAL CODES

Jon-Lark Kim and Yoonjin Lee

Abstract. Self-dual codes have been actively studied because of their
connections with other mathematical areas including t-designs, invari-
ant theory, group theory, lattices, and modular forms. We presented
the building-up construction for self-dual codes over GF (q) with q ≡ 1
(mod 4), and over other certain rings (see [19], [20]). Since then, the ex-
istence of the building-up construction for the open case over GF (q) with
q = pr ≡ 3 (mod 4) with an odd prime p satisfying p ≡ 3 (mod 4) with
r odd has not been solved. In this paper, we answer it positively by pre-
senting the building-up construction explicitly. As examples, we present
new optimal self-dual [16, 8, 7] codes over GF (7) and new self-dual codes
over GF (7) with the best known parameters [24, 12, 9].

1. Introduction

Since the development of Algebraic Coding Theory, self-dual codes have
become one of the main research topics because of their connections with
groups, combinatorial t-designs, lattices, and modular forms (see [26]). Some
well known constructions of self-dual codes include the gluing vector technique
([23, 24]) and automorphism group method [15].

A recently developed and popular construction is to obtain self-dual codes
from self-dual codes of smaller lengths. In [4, 6], the authors used shadow codes.
Motivated by Harada’s work [12], the second author Kim [17] introduced the
so-called building-up construction for binary self-dual codes. It shows that any
binary self-dual code can be built from a self-dual code of a smaller length.
Then later, the building-up construction for self-dual codes over finite fields
GF (q) was developed when q is a power of 2 or q ≡ 1 (mod 4) [19], and then
over finite ring Zpm with p ≡ 1 (mod 4) [22], and over Galois rings GR(pm, r)
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with p ≡ 1 (mod 4) with any r or p ≡ 3 (mod 4) with r even [20], where m is
any positive integer. The building-up construction is so powerful that one can
find many (often new) self-dual codes of reasonable lengths (e.g. [9]).

In this paper, we complete the open cases of the building-up construction
for self-dual codes over GF (q) with q = pr ≡ 3 (mod 4) with an odd prime p
such that p ≡ 3 (mod 4) with r odd. Since the length of the built codes from
a given self-dual code increases by 4, it is more difficult to choose new four
columns and two rows to be added to the generator matrix of a given self-dual
code. Thus we have to change the proofs of the original papers [17], [19] dealing
with the building-up construction for binary codes and codes over GF (q) with
q ≡ 1 (mod 4). Furthermore, as examples, we obtain 208 new optimal self-dual
[16, 8, 7] codes over GF (7) and 59 new self-dual codes over GF (7) with the best
known parameters [24, 12, 9].

We remark that a preliminary result of this paper was announced in [21].
However, this full paper has never been published in a journal. The paper [21]
claims that the building-up construction for the open case is possible but its
proof is not given. Nevertheless, the authors [11] have already utilized the
result of this full paper in order to study self-dual codes over F2 + uF2. Then
recently Alfaro and Dhul-Qarnayn [3] and Han [10] have cited our paper as a
main reference.

Therefore, we feel that it is worth publishing our full paper. This full paper
contains detailed proofs of the main theorems and a new result on new optimal
self-dual codes of lengths 16 and 24 over GF (7). All the codes in the paper are
found by Magma [5] and are posted on [18].

2. Building-up construction for self-dual codes over GF (q) with
q ≡ 3 (mod 4)

In this section we provide the building-up construction for self-dual codes
over GF (q) with q ≡ 3 (mod 4), where q is a power of an odd prime. It is
known [26, p. 193] that if q ≡ 3 (mod 4) then a self-dual code of length n
exists if and only if n is a multiple of 4. Our building-up construction needs
the following known lemma [16, p. 281].

Lemma 2.1. Let q be a power of an odd prime with q ≡ 3 (mod 4). Then

there exist α and β in GF (q)∗ such that α2 + β2 + 1 = 0 in GF (q), where

GF (q)∗ denotes the set of units of GF (q).

We give the building-up construction below and prove that it holds for any
self-dual code over GF (q) with q ≡ 3 (mod 4).

Proposition 2.2. Let q be a power of an odd prime such that q ≡ 3 (mod 4),
and let n be even. Let α and β be in GF (q)∗ such that α2 + β2 + 1 = 0 in

GF (q). Let G0 = (ri) be a generator matrix (not necessarily in standard form)
of a self-dual code C0 over GF (q) of length 2n, where ri are the row vectors

for 1 ≤ i ≤ n. Let x1 and x2 be vectors in GF (q)2n such that x1 · x2 = 0 in
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GF (q) and xi · xi = −1 in GF (q) for each i = 1, 2. For each i, 1 ≤ i ≤ n,
let si := x1 · ri, ti := x2 · ri, and yi := (−si,−ti,−αsi − βti,−βsi + αti) be a

vector of length 4. Then the following matrix

G =















1 0 0 0 x1

0 1 0 0 x2

y1 r1
...

...

yn rn















generates a self-dual code C over GF (q) of length 2n+ 4.

Proof. We first show that any two rows of G are orthogonal to each other. Each
of the first two rows of G is orthogonal to itself as the inner product of the ith
row with itself equals 1+xi ·xi = 0 in GF (q) for i = 1, 2. The first row of G is
orthogonal to the second row of G as x1 · x2 = 0 in GF (q). Furthermore, the
first row of G is orthogonal to any (i + 2)th row of G for 1 ≤ i ≤ n since the
inner product of the first row of G with the (i+ 2)th row of G is

(1, 0, 0, 0) · yi + x1 · ri = −si + si = 0.

Similarly, the second row of G is orthogonal to any (i + 2)th row of G for
1 ≤ i ≤ n. We note that ri · rj = 0 for 1 ≤ i, j ≤ n. Any (i + 2)th row of G is
orthogonal to any (j + 2)th row for 1 ≤ i, j ≤ n because the inner product of
the (i+ 2)th row of G with the (j + 2)th row is equal to

yi · yj + ri · rj = (1 + α2 + β2)(sisj + titj) = 0 in GF (q).

Therefore, C is self-orthogonal; so C ⊆ C⊥.
We claim that the code C is of dimension n + 2. It suffices to show that

no nontrivial linear combination of the first two rows of G is in the span of
the bottom n rows of G. Assume such a combination exists. Denoting the
first two rows of G by G1 and G2, we have c1G1 + c2G2 =

∑n
i=1 di(yi, ri) for

some nonzero c1 or c2 in GF (q) and some di in GF (q) with i = 1, . . . , n. Then
comparing the first four coordinates of the vectors in both sides, we get c1 =
−
∑n

i=1 disi, c2 = −
∑n

i=1 diti, 0 = −
∑n

i=1 di(αsi + βti), 0 =
∑n

i=1 di(−βsi +
αti); thus 0 = −

∑n
i=1 di(αsi + βti) = α(−

∑n
i=1 disi) + β(−

∑n
i=1 diti) =

αc1+βc2, that is, we have αc1+βc2 = 0. Similarly we also have−βc1+αc2 = 0.
From both equations αc1+βc2 = 0, −βc1+αc2 = 0, it follows that c1 = c2 = 0,
a contradiction.

As the code C is of dimension n + 2 and dim C + dim C⊥ = 2n+ 4, C and
C⊥ have the same dimension. Since C ⊆ C⊥, we have C = C⊥, that is, C is
self-dual. �

We give a more efficient algorithm to construct G in Proposition 2.2 as
follows. The idea of this construction comes from the recursive algorithm
in [1], [2].
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Modified building-up construction

• Step 1:
Under the same notations as above, we consider the following.
For each i, let si and ti be in GF (q) and define yi := (si, ti, αsi +

βti, βsi − αti) be a vector of length 4. Then

G1 =







y1 r1
...

...
yn rn







generates a self-orthogonal code C1.
• Step 2:

Let C be the dual of C1. Consider the quotient space C/C1. Let
U1 be the set of all coset representatives of the form x′

1 = (1 0 0 0 x1)
such that x′

1 · x
′

1 = 0 and U2 the set of all coset representatives of the
form x′

2 = (0 1 0 0 x2) such that x′
2 · x

′
2 = 0.

• Step 3:
For any x′

1 ∈ U1 and x′

2 ∈ U2 such that x′

1 · x
′

2 = 0, the following
matrix

G =















1 0 0 0 x1

0 1 0 0 x2

y1 r1
...

...
yn rn















generates a self-dual code C over GF (q) of length 2n+ 4.

Then, we have the following immediately.

Proposition 2.3. Let SD1 be the set of all self-dual codes obtained from Propo-

sition 2.2 with all possible vectors of x1 and x2. Let SD2 be the set of all self-

dual codes obtained from the modified building-up construction with all possible

values of si and ti in GF (q) for 1 ≤ i ≤ n. Then SD1 = SD2.

What follows is the converse of Proposition 2.2, that is, every self-dual code
over GF (q) with q ≡ 3 (mod 4) can be obtained by the building-up method in
Proposition 2.2.

Proposition 2.4. Let q be a power of an odd prime such that q ≡ 3 (mod 4).
Any self-dual code C over GF (q) of length 2n with even n ≥ 4 is obtained

from some self-dual code C0 over GF (q) of length 2n − 4 (up to permutation

equivalence) by the construction method given in Proposition 2.2.

Proof. Let G be a generator matrix of C. Let In denote the identity matrix
of order n. Without loss of generality we may assume that G = (In | A) =
(ei | ai), where ei and ai are the row vectors of In and A, respectively for
1 ≤ i ≤ n. It is enough to show that there exist vectors x1,x2 in GF (q)2n−4
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and a self-dual code C0 over GF (q) of length 2n − 4 whose extended code C1

(constructed by the method in Proposition 2.2) is equivalent to C.
We note that ai ·aj = 0 for i 6= j, 1 ≤ i, j ≤ n and ai ·ai = −1 for 1 ≤ i ≤ n

since C is self-dual. Let α and β be in GF (q)∗ such that α2 + β2 + 1 = 0 in
GF (q). We notice that C also has the following generator matrix

G′ :=



















e1 + αe3 + βe4 a1 + αa3 + βa4

e2 + βe3 − αe4 a2 + βa3 − αa4

e3 a3
e4 a4
...

...
en an



















.

Deleting the first four columns and the third and fourth rows of G′ produces
the following (n− 2)× (2n− 4) matrix G0:

G0 :=















0 · · · 0 a1 + αa3 + βa4
0 · · · 0 a2 + βa3 − αa4

a5

In−4

...
an















.

We claim that G0 is a generator matrix of some self-dual code C0 of length
2n− 4. We first show that G0 generates a self-orthogonal code C0 as follows.
The inner product of the first row of G0 with itself is equal to

a1 · a1 + α2a3 · a3 + β2a4 · a4 = −(1 + α2 + β2) = 0,

and similarly the second row is orthogonal to itself. For 3 ≤ i ≤ n−2, the inner
product of the ith row of G0 with itself equals 1 + ai+2 · ai+2 = 0. The inner
product of the first row of G0 with the second row is αβa3 · a3 −αβa4 · a4 = 0.
Clearly, for 1 ≤ i, j ≤ n − 2 with i 6= j, any ith row is orthogonal to any jth
row.

Now we show that |C0| = qn−2, so C0 is self-dual. First of all, we note that
both vectors v1 := a1 + αa3 + βa4 and v2 := a2 + βa3 − αa4 in the first two
rows of G0 contain units. Otherwise, both vectors are zero vectors. Then a1 =
−(αa3+βa4), then −1 = a1 ·a1 = (αa3+βa4) · (αa3+βa4) = −(α2+β2) = 1,
i.e., −1 = 1 in GF (q), which is impossible since q is odd. So, v1 is a nonzero
vector, and hence it contains a unit. Similarly, it is also true for v2. We can
also show that v1 and v2 are linearly independent. If not, v1 = cv2 for some
c in GF (q)∗. Then by taking inner products of both sides with a1, we have
a1 · v1 = ca1 · v2, so we get −1 = 0, a contradiction. Therefore it follows that
G0 is equivalent to a standard form of matrix [In−2 | ∗ ], so that |C0| = qn−2,
that is, C0 is self-dual.

Let x1 = (0, . . . , 0 | a1) and x2 = (0, . . . , 0 | a2) be row vectors of length
2n − 4. Then for i = 1, 2, xi · xi = ai · ai = −1 in GF(q) and x1 · x2 =
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a1 · a2 = 0 in GF(q). Using the vectors x1,x2 and the self-dual code C0, we
can construct a self-dual code C1 with the following n × 2n generator matrix
G1 by Proposition 2.2:

G1 :=























1 0 0 0 0 · · · 0 a1
0 1 0 0 0 · · · 0 a2
1 0 α β 0 · · · 0 a1 + αa3 + βa4

0 1 β −α 0 · · · 0 a2 + βa3 − αa4

0 0 0 0 a5
...

...
...

... In−4

...
0 0 0 0 an























.

Clearly G1 is row equivalent to G. Hence the given code C is the same as
the code C1 that is obtained from the code C0 by the building-up construction
in Proposition 2.2. This completes the proof. �

Remark 2.5. Note that in the statement of Proposition 2.4 we do not have any
condition on the minimum distance of C. In the middle part of the proof of
Proposition 2.4 we have shown that G0 has size (n − 2) × (2n − 4) and has
dimension n− 2 without using the minimum distance of C.

2.1. Self-dual codes over GF (7)

Next we consider self-dual codes over GF (7). The classification of self-dual
codes overGF (7) was known up to lengths 12 (see [7, 8, 14, 25]). The papers [7,
8] used the monomial equivalence and monomial automorphism groups of self-
dual codes over GF (7). Hence we also use the monomial equivalence and
monomial automorphism groups. On the other hand, the (1,−1, 0)-monomial
equivalence was used in [25, Theorem 1] to give a mass formula:

∑

j

2nn!

|Aut(Cj)|
= N(n) = 2

(n−2)/2
∏

i=1

(7i + 1),

where N(n) denotes the total number of distinct self-dual codes over GF (7). In
particular, when n = 16, there are at least 785086 > N(16)/21616! inequivalent
self-dual [16, 8] codes over GF (7) under the (1,−1, 0)-monomial equivalence.
It will be very difficult to classify all self-dual [16, 8] codes. In what follows, we
focus on self-dual codes with the highest minimum distance.

For length n = 16, only ten optimal self-dual [16, 8, 7] codes over GF (7)
were known [8]. These have (monomial) automorphism group orders 96 or 192.
We construct at least 214 self-dual [16, 8, 7] codes over GF (7) by applying the
building-up construction to the bordered circulant code with α = 0, β = 2 = γ
and the row (2, 5, 5, 2, 0), denoted by C1,1 in [7]. We check that the 207 codes
of the 214 codes have automorphism group orders 6, 12, 24, 48, 72, and hence
they are new. On the other hand, the remaining seven codes have group orders
96 or 192, and we have checked that six of them are equivalent to the first four
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codes and the last two codes in [8, Table 7], and that the remaining one code
is new. We list 20 of our 214 codes in Table 1, where x1 and x2 are given in
the second and third columns respectively, and A7 and A8 are given in the last
column so that the Hamming weight enumerator of the corresponding code can
be derived from the appendix of [8].

Table 1. New [16, 8, 7] self-dual codes over GF (7) using C1,1 in [7]

# x1 = (0 . . . 0x1 . . . x12) x2 = (0 . . . 0x5 . . . x12) |Aut| A7, A8

1 2 1 2 6 1 6 1 0 1 2 1 1 6 5 1 0 24 696, 3432
2 1 2 2 6 1 6 1 0 4 5 6 4 4 6 1 0 24 720, 3360
3 5 1 5 6 1 6 1 0 4 5 1 3 6 1 3 0 12 636, 3780
4 5 1 5 1 1 6 1 0 6 3 3 6 1 2 3 0 6 564, 3996
5 6 5 5 1 1 6 1 0 3 4 1 2 4 1 1 0 12 540, 4068
6 5 2 1 1 1 6 1 0 2 1 2 1 5 2 3 0 12 588, 3924
7 1 6 2 2 1 6 1 0 3 2 1 5 1 2 2 0 6 612, 3804
8 4 2 3 3 1 6 1 0 3 3 5 3 3 5 2 0 12 576, 3936
9 5 3 3 3 1 6 1 0 4 1 4 5 1 3 1 0 12 588, 3876
10 3 2 4 3 1 6 1 0 5 5 2 4 1 5 1 0 12 552, 4104
11 2 3 4 3 1 6 1 0 4 4 5 4 4 2 2 0 12 624, 3744
12 5 4 4 3 1 6 1 0 3 6 2 6 3 1 3 0 12 612, 3852
13 5 3 4 4 1 6 1 0 5 5 5 3 5 1 1 0 48 576, 3936
14 1 5 1 5 1 6 1 0 3 1 1 2 4 3 1 0 24 480, 4320
15 2 6 1 5 1 6 1 0 5 3 1 1 1 3 3 0 24 672, 3552
16 3 4 4 5 1 6 1 0 5 2 5 3 6 2 1 0 48 528, 4128
17 2 1 6 5 1 6 1 0 6 2 5 2 3 2 1 0 12 672, 3552
18 5 2 3 5 2 6 1 0 1 4 4 5 1 4 1 0 12 660, 3708
19 2 2 4 5 2 6 1 0 2 1 2 1 2 5 3 0 6 564, 4092
20 6 6 6 5 2 6 1 0 1 3 1 4 6 2 3 0 6 600, 3912

Theorem 2.6. There exist at least 218 self-dual [16, 8, 7] codes over GF (7).

For length 20 only one optimal self-dual [20, 10, 9] code over GF (7) is known
([7], [8]). It is an open question to determine whether this code is unique.

For length 24 there are 488 best known self-dual [24, 12, 9] codes over GF (7)
([8]). It has been confirmed [13] that the 488 codes in [8] (only 40 codes are
shown in [8]) have non-trivial automorphism groups. On the other hand, we
have found at least 59 self-dual [24, 12, 9] codes over GF (7), each of which has
a trivial automorphism group. To do this, we have used the bordered circulant
code over GF (7) with α = 2, β = 1 = γ and the row (4, 6, 3, 6, 6, 1, 4, 3, 0),
denoted by C20,1 [7]. We list 10 of our 59 codes in Table 2, where x1 and
x2 are given in the second and third columns respectively, and A9, . . . , A12

are given in the last column so that the Hamming weight enumerator of the
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Table 2. New [24, 12, 9] self-dual codes over GF (7) using
C20,1 in [7] with trivial automorphism groups

# x1 = (0 . . . 0x9 . . . x20) x2 = (0 . . . 0x9 . . . x20) A9, A10, A11, A12

1 2 6 2 3 2 1 6 1 6 1 0 0 4 4 3 5 3 2 1 1 6 1 0 0 948, 8496, 65520, 425484
2 2 2 5 1 3 1 6 1 6 1 0 0 3 5 4 4 6 4 2 1 6 1 0 0 894, 8802, 64572, 427236
3 6 4 4 1 4 1 6 1 6 1 0 0 3 6 2 6 1 2 2 1 6 1 0 0 936, 8436, 65580, 427704
4 2 6 2 3 5 1 6 1 6 1 0 0 5 3 3 4 4 2 1 1 6 1 0 0 882, 8592, 65544, 427086
5 5 6 5 4 5 1 6 1 6 1 0 0 2 1 3 5 1 5 1 1 6 1 0 0 774, 8706, 66204, 426204
6 1 4 2 2 1 2 6 1 6 1 0 0 3 3 5 6 3 4 2 1 6 1 0 0 948, 8466, 65520, 426306
7 4 5 3 4 4 2 6 1 6 1 0 0 1 3 5 1 2 1 2 1 6 1 0 0 936, 8982, 63516, 426750
8 1 6 4 6 4 3 6 1 6 1 0 0 2 1 6 3 2 6 2 1 6 1 0 0 966, 8502, 65148, 426792
9 1 3 3 1 1 3 6 1 6 1 0 0 5 2 2 3 2 4 2 1 6 1 0 0 966, 8700, 64500, 425730
10 4 6 1 6 3 4 6 1 6 1 0 0 5 1 6 3 6 2 2 1 6 1 0 0 846, 8796, 65448, 424134

corresponding code can be derived from the appendix of [8]. We therefore
obtain the following theorem.

Theorem 2.7. There exist at least 547 self-dual [24, 12, 9] codes over GF (7).

3. Conclusion

We have completed the open cases of the building-up construction for self-
dual codes over GF (q) with q ≡ 3 (mod 4) with p ≡ 3 (mod 4).

We have seen that the building-up construction is a very efficient way of
finding many self-dual codes of reasonable lengths. In particular, we obtain
new optimal self-dual [16, 8, 7] codes over GF (7) and new self-dual codes over
GF (7) with the best known parameters [24, 12, 9].
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