• Title/Summary/Keyword: Optical path

Search Result 496, Processing Time 0.027 seconds

Calculation of Changed Optical Path Length of Bi12SiO20Single Crystal by the Electric Field (전기장에 의한 Bi12SiO20 단결정의 변화된 광행로길이 계산)

  • Lee, Su-Dae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.11
    • /
    • pp.1048-1055
    • /
    • 2005
  • The formula to calculate a variation of optical path length of single crystal by the electric field was derived by this study. The formula was applied to $Bi_{12}SiO_{20}$ single crystal. The results are as follows. In case of the applied electric field in the body diagonal direction and the passing light along the same direction, the variation of optical path length had the largest value. The symmetry of the space distribution of optical path length satisfied $E3C_2\;8C_3$, the set of elements of the symmetry of $Bi_{12}SiO_{20}$ single crystal. The property which gave the largest influence to the variation of optical path length is the strain of length by the Inverse piezoelectric effect. The second influence, is the variation of the refractive index by the electro-optic effect. The variation of optical path length by the inverse piezoelectric effect and by the electro-optic effect have a reverse sign each other.

Post-tuning of Sample Position in Common-path Swept-source Optical Coherence Tomography

  • Park, Jae-Seok;Jeong, Myung-Yung;Kim, Chang-Seok
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.380-385
    • /
    • 2011
  • Common-path interferometers are widely used for endoscopic optical coherence tomography (OCT) because an arbitrary arm length can be chosen for the endoscopic imaging probe. However, the scheme suffers from the limited range of the sample position distance from the end of the imaging probe because the position between the reference reflector and the sample is limited by the optical path-length difference (OPD) to induce an interference signal. In this study, we developed a novel method for compensating the arbitrary sample position in common-path swept-source OCT by adding an extra Mach-Zehnder interferometer in the post-path of the interfered optical signal. Theoretical analysis and an experimental demonstration of imaging depth tuning for the flexible sample position of an endoscopic OCT image are discussed. After post-tuning of sample position distance, the positioning limitation between the reference reflector and the sample can be solved for various sample positions over a range of 26 mm for the cross-sectional images of a fish eye sample.

Edge-Node Deployed Routing Strategies for Load Balancing in Optical Burst Switched Networks

  • Barradas, Alvaro L.;Medeiros, Maria Do Carmo R.
    • ETRI Journal
    • /
    • v.31 no.1
    • /
    • pp.31-41
    • /
    • 2009
  • Optical burst switching is a promising switching paradigm for the next IP-over-optical network backbones. However, its burst loss performance is greatly affected by burst contention. Several methods have been proposed to address this problem, some of them requiring the network to be flooded by frequent state dissemination signaling messages. In this work, we present a traffic engineering approach for path selection with the objective of minimizing contention using only topological information. The main idea is to balance the traffic across the network to reduce congestion without incurring link state dissemination protocol penalties. We propose and evaluate two path selection strategies that clearly outperform shortest path routing. The proposed path selection strategies can be used in combination with other contention resolution methods to achieve higher levels of performance and support the network reaching stability when it is pushed under stringent working conditions. Results show that the network connectivity is an important parameter to consider.

  • PDF

Estimation of Allowable Path-deviation Time in Free-space Optical Communication Links Using Various Aircraft Trajectories

  • Kim, Chul Han
    • Current Optics and Photonics
    • /
    • v.3 no.3
    • /
    • pp.210-214
    • /
    • 2019
  • The allowable path-deviation time of aircraft in a free-space optical communication system has been estimated from various trajectories, using different values of aircraft speeds and turn rates. We assumed the existence of a link between the aircraft and a ground base station. First, the transmitter beam's divergence angle was calculated through two different approaches, one based on a simple optical-link equation, and the other based on an attenuation coefficient. From the calculations, the discrepancy between the two approaches was negligible when the link distance was approximately 110 km, and was under 5% when the link distance ranged from 80 to 140 km. Subsequently, the allowable path-deviation time of the aircraft within the tracking-error tolerance of the system was estimated, using different aircraft speeds, turn rates, and link distances. The results indicated that the allowable path-deviation time was primarily determined by the aircraft's speed and turn rate. For example, the allowable path-deviation time was estimated to be ~3.5 s for an aircraft speed of 166.68 km/h, a turn rate of $90^{\circ}/min$, and a link distance of 100 km. Furthermore, for a constant aircraft speed and turn rate, the path-deviation time was observed to be almost unchanged when the link distance ranged from 80 to 140 km.

New Path-Setup Method for Optical Network-on-Chip

  • Gu, Huaxi;Gao, Kai;Wang, Zhengyu;Yang, Yintang;Yu, Xiaoshan
    • ETRI Journal
    • /
    • v.36 no.3
    • /
    • pp.367-373
    • /
    • 2014
  • With high bandwidth, low interference, and low power consumption, optical network-on-chip (ONoC) has emerged as a highly efficient interconnection for the future generation of multicore system on chips. In this paper, we propose a new path-setup method for ONoC to mitigate contentions, such as packets, by recycling the setup packet halfway to the destination. A new, strictly non-blocking $6{\times}6$ optical router is designed to support the new method. The simulation results show the new path-setup method increases the throughput by 52.03%, 41.94%, and 36.47% under uniform, hotspot-I, and hotspot-II traffic patterns, respectively. The end-to-end delay performance is also improved.

Homing Navigation Based on Path Integration with Optical Flow (광학 흐름 기반 경로 누적법을 이용한 귀소 내비게이션)

  • Cha, Young-Seo;Kim, Dae-Eun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.2
    • /
    • pp.94-102
    • /
    • 2012
  • There have been many homing navigation algorithms for robotic system. In this paper, we suggest a bio-inspired navigation model. It builds path integration based on optical flow. We consider two factors on robot movements, translational movement and rotational movement. For each movement, we found distinguishable optical flows. Based on optical flow, we estimate ego-centric robot movement and integrate the path optimally. We can determine the homing direction and distance. We test this algorithm and evaluate the performance of homing navigation for robotic system.

Effect of Mirror Misalignments on Optical Ray Path In a Ring Resonator

  • Lee, Dong-Chan;Lee, Jae-Cheul;Son, Seong-Hyun;Cho, Hyun-Ju
    • Journal of the Optical Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.121-127
    • /
    • 2002
  • The operating principal of a ring laser gyroscope depends on the phase difference for the counter-propagating waves within a closed path. The reflecting mirrors mounted on the monoblock form the traveling waves. The manufacturing accuracy of the monoblock influences the traveling path of ray, the sensitivity of laser resonator for misalignments, and diffraction losses. A 3 $\times$ 3 ray transfer matrix was derived for optical components with centering and squaring errors in a ring resonator. The matrix can be utilized to predict the optical ray paths on the basis of the manufacturing errors of the monoblock as well as the misalignment of mirrors. Then the distance and orientation (o. slope) at the arbitrary plane inside the resonator along the ideal optical path can be calculated from the chain multiplication of the ray transfer matrix for each optical component in one round trip. We also show that the counter-propagating rays In a ring resonator with errors does not coincide in each round trip, which results in gain difference between two beams, and how these errors can be adjusted through the alignment procedure. Finally this 3 $\times$ 3 ray matrix formalism can be used to calculate the beam size and its displacement from the optical axis and the deviation at the diaphragm.

Match Field based Algorithm Selection Approach in Hybrid SDN and PCE Based Optical Networks

  • Selvaraj, P.;Nagarajan, V.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.5723-5743
    • /
    • 2018
  • The evolving internet-based services demand high-speed data transmission in conjunction with scalability. The next generation optical network has to exploit artificial intelligence and cognitive techniques to cope with the emerging requirements. This work proposes a novel way to solve the dynamic provisioning problem in optical network. The provisioning in optical network involves the computation of routes and the reservation of wavelenghs (Routing and Wavelength assignment-RWA). This is an extensively studied multi-objective optimization problem and its complexity is known to be NP-Complete. As the exact algorithms incurs more running time, the heuristic based approaches have been widely preferred to solve this problem. Recently the software-defined networking has impacted the way the optical pipes are configured and monitored. This work proposes the dynamic selection of path computation algorithms in response to the changing service requirements and network scenarios. A software-defined controller mechanism with a novel packet matching feature was proposed to dynamically match the traffic demands with the appropriate algorithm. A software-defined controller with Path Computation Element-PCE was created in the ONOS tool. A simulation study was performed with the case study of dynamic path establishment in ONOS-Open Network Operating System based software defined controller environment. A java based NOX controller was configured with a parent path computation element. The child path computation elements were configured with different path computation algorithms under the control of the parent path computation element. The use case of dynamic bulk path creation was considered. The algorithm selection method is compared with the existing single algorithm based method and the results are analyzed.

Absolute Positioning System of Mobile Robot using Light Navigation Path (광궤도를 이용한 이동로봇의 절대위치 보정 시스템)

  • 박용택;정효용;국금환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.10
    • /
    • pp.141-147
    • /
    • 2003
  • This paper represents an absolute positioning system using a light navigation path for mobile robot. The absolute positioning system is composed of the projector unit which generates a laser beam using laser diode and mobile robot with the optical detector which has some optical sensors. The projector unit is fixed over the navigating plane of mobile robot to generate the light navigation path, and the optical detector located upper part of mobile robot detects the generated laser beam from the projector. The navigation of mobile robot is controlled by the micro-processor which compares the detected present position from the detector with the previously programmed navigation path. And experimental results show that our sensor system can be used for the absolute positioning system of the mobile robot.