• Title/Summary/Keyword: Optical measurement

Search Result 3,146, Processing Time 0.032 seconds

Process Study of Direct Laser Lithographic System for Fabricating Diffractive Optical Elements with Various Patterns (다중 패턴의 회절광학소자 제작을 위한 레이저 직접 노광시스템의 공정 연구)

  • Kim, Young-Gwang;Rhee, Hyug-Gyo;Ghim, Young-Sik;Lee, Yun-Woo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.2
    • /
    • pp.58-62
    • /
    • 2019
  • Diffractive Optical Elements(DOEs) diffracts incident light using the diffraction phenomenon of light to generate a desired diffraction image. In recent years, the use of diffraction optics, which can replace existing refractive optical elements with flat plates, has been increased by implementing various optical functions that could not be implemented in refractive optical devices and by becoming miniaturized and compacted optical elements. Direct laser lithography is typically used to effectively fabrication such a diffractive optical element in a large area with a low process cost. In this study, the process conditions for fabricating patterns of diffractive optical elements in various shapes were found using direct laser lithographic system, and optical performance evaluation was performed through fabrication.

Measurement of Primary-mirror Vertex Coordinates for a Space Camera by Using a Computer-generated Hologram and a Theodolite (컴퓨터 제작 홀로그램과 데오도라이트를 이용한 인공위성 카메라 주 반사경의 정점 좌표 측정)

  • Kang, Hye-Eun;Song, Jae-Bong;Yang, Ho-soon;Kihm, Hagyong
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.4
    • /
    • pp.146-152
    • /
    • 2017
  • Alignment of the mirrors composing a space telescope is an important process for obtaining high optical resolution and performance of the camera system. The alignment of mirrors using cube mirrors requires a relative coordinate mapping between the mirror and the cube mirror before optical-system integration. Therefore, to align the spacecraft camera mirrors, the relative coordinates of the vertex of each mirror and the corresponding cube mirror must be accurately measured. This paper proposes a new method for finding the vertex position of a primary mirror, by using an optical fiber and alignment segments of a computer-generated hologram (CGH). The measurement system is composed of an optical testing interferometer and a multimode optical fiber. We used two theodolites to measure the relative coordinates of the optical fiber located at the mirror vertex with respect to the cube mirror, and achieved a measurement precision of better than $25{\mu}m$.

Weak Value Measurement of an Optical Beam Deflection in Image Rotating Sagnac Interferometer

  • Park, Sang-Joon;Kim, Hyoung Joo;Noh, Jaewoo
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.277-281
    • /
    • 2012
  • We measured small optical beam deflection in an image rotating Sagnac interferometer. We used a weak value measurement scheme that involves a pre-selection, weak perturbation, and a post-selection procedure to obtain the amplified value of beam deflection. The amplification factor of the measured beam deflection varied from 11 to 63 depending on the settings of the post-selection polarizer in front of the photodetector and the settings of polarization compensator in the interferometer.

Measurement of Grating Pitch Standards using Optical Diffractometry and Uncertainty Analysis (광 회절계를 이용한 격자 피치 표준 시편의 측정 및 불확도 해석)

  • Kim Jong-Ahn;Kim Jae-Wan;Park Byong-Chon;Kang Chu-Shik;Eom Tae-Bong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.8 s.185
    • /
    • pp.72-79
    • /
    • 2006
  • We measured grating pitch standards using optical diffractometry and analyzed measurement uncertainty. Grating pitch standards have been used widely as a magnification standard for a scanning electron microscope (SEM) and a scanning probe microscope (SPM). Thus, to establish the meter-traceability in nano-metrology using SPM and SEM, it is important to certify grating pitch standards accurately. The optical diffractometer consists of two laser sources, argon ion laser (488 nm) and He-Cd laser (325 nm), optics to make an incident beam, a precision rotary table and a quadrant photo-diode to detect the position of diffraction beam. The precision rotary table incorporates a calibrated angle encoder, enabling the precise and accurate measurement of diffraction angle. Applying the measured diffraction angle to the grating equation, the mean pitch of grating specimen can be obtained very accurately. The pitch and orthogonality of two-dimensional grating pitch standards were measured, and the measurement uncertainty was analyzed according to the Guide to the Expression of Uncertainty in Measurement. The expanded uncertainties (k = 2) in pitch measurement were less than 0.015 nm and 0.03 nm for the specimen with the nominal pitch of 300 nm and 1000 nm. In the case of orthogonality measurement, the expanded uncertainties were less than $0.006^{\circ}$. In the pitch measurement, the main uncertainty source was the variation of measured pitch values according to the diffraction order. The measurement results show that the optical diffractometry can be used as an effective calibration tool for grating pitch standards.

A Study on a Hartmann Test of Optical Mirror for On-Machine Measurement of Polishing machine (광학면 연마기의 OMM을 위한 Hartmann Test 방법 연구)

  • 김옥현;이응석;오창진;김용관
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.40-45
    • /
    • 2004
  • Recently, aspheric optical lenses and mirrors, which are harder to manufacture and measure than the conventional spherical ones, are widely used, particularly in electronic fabrication process. Generally, interferometric optical method is used for the measurement of spherical optical surface. However, the interferometric method for aspheric surface measurement is difficult because it needs a precise null corrector and strict environmental conditions such as constant temperature, humidity and vibrations. We have been studied on the manufacturing of aspheric optics to improve the surface profile accuracy and productivity using a corrective polishing process. For the corrective polishing, a practical method of On-Machine Measurement (OMM) is required. For this purpose, an optical OMM system has been studied using the Shach-Hartmann test, which is very robust to the practical polishing environment. The wavefront has been reconstructed from the measured data using the primary aberration polynomial function by the least squares fitting. The measured result of the OMM system shows that the maximum deviation is less than 200 nm for the one of commercial Fizeau interferometer Wyko 6000.

Sensor Structure and Signal Processing System for Precision Optical Displacement Measurement (초정밀 광학식 변위 측정을 위한 센서 구호 밀 신호 처리 시스템)

  • O, Se-Baek;Kim, Gyeong-Chan;Kim, Su-Hyeon;Gwak, Yun-Geun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.8
    • /
    • pp.40-47
    • /
    • 2001
  • Optical measurement methods make it possible to detect object displacements with high resolution and noncontact measurements. Also, they are very robust against EMI noises and have long operation range. An optical triangulation sensor is one of widely used displacement measurement sensors for its sub-micron resolution, fast response, simple structure, and low cost. However. there are several errors caused by inclinations of a surface. speckle effects, power fluctuations of light sources, and noises of detectors. In this paper, in order to minimize error effects, we performed error analysis and proposed a new structure. Then, we setup a new modeling method and verify it through simulations and experiments. Based on the new model. we propose a new sensor structure and establish design criteria. Finally, we design a signal processing system to overcome a resolution-limited problem of light detectors. The resolution of the proposed system is 0.2${\mu}{\textrm}{m}$ in 5mm operating range.

  • PDF

Partial Discharge Monitoring Technology based on Distributed Acoustic Sensing (분포형 광음향센싱 기반 부분방전 모니터링 기술 연구)

  • Huioon, Kim;Joo-young, Lee;Hyoyoung, Jung;Young Ho, Kim;Myoung Jin, Kim
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.441-447
    • /
    • 2022
  • This study describes a novel method for detecting and measuring partial discharge (PD) on an electrical facility such as an insulated power cable or switchgear using fiber optic sensing technology, and a distributed acoustic sensing (DAS) system. This method has distinct advantages over traditional PD sensing techniques based on an electrical method, including immunity to electromagnetic interference (EMI), long range detection, simultaneous detection for multiple points, and exact location. In this study, we present a DAS system for PD detection with performance evaluation and experimental results in a simulated environment. The results show that the system can be applied to PD detection.

Displacement Measurement by Multiplexed Optical Loss -based Fiber Optic Sensor (다중화된 광 손실형 광섬유 센서에 의한 변위의 측정)

  • 권일범;김치엽;유정애
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.556-565
    • /
    • 2003
  • Light losses in optical fibers are investigated by a fiber optic OTDR (Optical Time Domain Reflectometry) sensor system to develop fiber optic probes for structural displacement measurement. The displacement sensitivity was determined by the measurements of fiber-bending loss according to the gage length changes of the displacement sensor. The fiber optic displacement probe was manufactured to verify the feasibility of the structural displacement measurement.

  • PDF

High-speed Three-dimensional Surface Profile Measurement with the HiLo Optical Imaging Technique

  • Kang, Sewon;Ryu, Inkeon;Kim, Daekeun;Kauh, Sang Ken
    • Current Optics and Photonics
    • /
    • v.2 no.6
    • /
    • pp.568-575
    • /
    • 2018
  • Various techniques to measure the three-dimensional (3D) surface profile of a 3D micro- or nanostructure have been proposed. However, it is difficult to apply such techniques directly to industrial uses because most of them are relatively slow, unreliable, and expensive. The HiLo optical imaging technique, which was recently introduced in the field of fluorescence imaging, is a promising wide-field imaging technique capable of high-speed imaging with a simple optical configuration. It has not been used in measuring a 3D surface profile although confocal microscopy originally developed for fluorescence imaging has been adapted to the field of 3D optical measurement for a long time. In this paper, to the best of our knowledge, the HiLo optical imaging technique for measuring a 3D surface profile is proposed for the first time. Its optical configuration and algorithm for a precisely detecting surface position are designed, optimized, and implemented. Optical performance for several 3D microscale structures is evaluated, and it is confirmed that the capability of measuring a 3D surface profile with HiLo optical imaging technique is comparable to that with confocal microscopy.