DOI QR코드

DOI QR Code

Measurement of Primary-mirror Vertex Coordinates for a Space Camera by Using a Computer-generated Hologram and a Theodolite

컴퓨터 제작 홀로그램과 데오도라이트를 이용한 인공위성 카메라 주 반사경의 정점 좌표 측정

  • Kang, Hye-Eun (Science of Measurement, University of Science and Technology) ;
  • Song, Jae-Bong (Center for Space Optics, Korea Research Institute of Standards and Science) ;
  • Yang, Ho-soon (Science of Measurement, University of Science and Technology) ;
  • Kihm, Hagyong (Science of Measurement, University of Science and Technology)
  • 강혜은 (과학기술연합대학원대학교 측정과학과) ;
  • 송재봉 (한국표준과학연구원 우주광학센터) ;
  • 양호순 (과학기술연합대학원대학교 측정과학과) ;
  • 김학용 (과학기술연합대학원대학교 측정과학과)
  • Received : 2017.04.30
  • Accepted : 2017.06.22
  • Published : 2017.08.25

Abstract

Alignment of the mirrors composing a space telescope is an important process for obtaining high optical resolution and performance of the camera system. The alignment of mirrors using cube mirrors requires a relative coordinate mapping between the mirror and the cube mirror before optical-system integration. Therefore, to align the spacecraft camera mirrors, the relative coordinates of the vertex of each mirror and the corresponding cube mirror must be accurately measured. This paper proposes a new method for finding the vertex position of a primary mirror, by using an optical fiber and alignment segments of a computer-generated hologram (CGH). The measurement system is composed of an optical testing interferometer and a multimode optical fiber. We used two theodolites to measure the relative coordinates of the optical fiber located at the mirror vertex with respect to the cube mirror, and achieved a measurement precision of better than $25{\mu}m$.

우주용 인공위성 카메라를 구성하는 반사경의 정렬은 광학계의 고분해능, 고성능을 얻기 위한 중요한 과정 중 하나이다. 반사경들의 상호정렬에는 큐브미러(cube mirror)가 대신 사용되기 때문에, 각 반사경과 해당 큐브미러 간의 상호위치관계 정보가 우선 필요하다. 따라서 우주용 카메라 반사경들의 정렬을 위해 각 반사경의 정점과 해당 큐브미러의 상대 좌표값을 정확하게 측정해야하며, 본 논문에서는 컴퓨터 제작 홀로그램(computer-generated hologram, CGH)의 정렬용 세그먼트와 광섬유를 이용하는 새로운 측정 시스템을 제안함으로써 우주용 카메라를 구성하는 반사경의 정점을 요구조건 이내로 측정할 수 있었다. 측정 시스템은 광학계 평가용 간섭계, CGH, 광섬유, 반사경으로 구성되어 있으며, 최종적으로 데오도라이트를 이용해 큐브미러를 기준으로 주 반사경의 정점에 위치한 광섬유 끝단의 3차원 상대 좌표값을 $25{\mu}m$ 이하의 정밀도로 측정할 수 있었다.

Keywords

References

  1. L. E. Cohan and D. W. Miller, "Integrated modeling for design of lightweight, active mirrors," Opt. Eng. 50(6), 063003 (2011). https://doi.org/10.1117/1.3592520
  2. H. Kihm, H.-S. Yang, I. K. Moon, J.-H. Yeon, S.-H. Lee, and Y.-W. Lee, "Adjustable bipod flexures for mounting mirrors in a space telescope," Appl. Opt. 51, 7776-7783 (2012). https://doi.org/10.1364/AO.51.007776
  3. H. Kihm and H.-S. Yang, "Design optimization of a 1-m lightweight mirror for a space telescope," Opt. Eng. 52(9), 091806 (2013). https://doi.org/10.1117/1.OE.52.9.091806
  4. H. Kihm, H.-S. Yang, and Y.-W. Lee, "Optomechanical analysis of a 1-m light-weight mirror system," J. Korean Phys. Soc. 62(9), 1239-1246 (2013). https://doi.org/10.3938/jkps.62.1239
  5. H. Kihm, H.-S. Yang, and Y.-W. Lee, "Bipod flexure for 1-m primary mirror system," Rev. Sci. Instrum. 85, 125101 (2014). https://doi.org/10.1063/1.4902151
  6. D. Nicolson, "KOMPSAT alignment analysis," TRW IOC KOMPSAT-1.96.410, P. 112 (1996).
  7. T. Reitmann, "KOMPSAT PFM alignment procedure," Trans. TRW, pp. 57-152 (1997).
  8. J.-B. Jo, J.-H. Hwang, and J.-S. Bae, "Online refocusing algorithm for a satellite camera using stellar sources," Opt. Express 24, 5411-5422 (2016) https://doi.org/10.1364/OE.24.005411
  9. D. Malacara, Optical Shop Testing, 3rd ed. (Wiley, 2007), Chapter 12.
  10. T. Kim, J. H. Burge, Y. Lee, and S. Kim, "Null test for a highly paraboloidal mirror," Appl. Opt. 43(18), 3614-3618 (2004). https://doi.org/10.1364/AO.43.003614
  11. W. Yu, K. Takahara, T. Konishi, T. Yotsuya, and Y. Ichioka, "Fabrication of multilevel phase computer-generated hologram elements based on effective medium theory." Appl. Opt. 39, 3531-3536 (2000). https://doi.org/10.1364/AO.39.003531
  12. P. Zhou and J. H. Burge, "Fabrication error analysis and experimental demonstration for computer generated holograms," Appl. Opt. 46, 657-663 (2007). https://doi.org/10.1364/AO.46.000657
  13. J. W. Goodman, Introduction to Fourier Optics, 2nd ed., (McGraw-Hill, 1996), Chapter. 4.
  14. Y.-S. Yoon and D.-J. Lee, "A study on a spacecraft alignment measurement with theodolite," J. KSMTE 12, 64-70 (2003)
  15. Z. Tong and W. Tang, "The application of data fusion in optical theodolite coordinate measurement system," Proc. SPIE 6595, 65951O (2007).
  16. R. L. Appler and B. J. Howell, "Optical alignment of multiple components to a common coordinate system," Appl. Opt. 7, 1007-1015 (1968). https://doi.org/10.1364/AO.7.001007