• Title/Summary/Keyword: Optical and structural properties

Search Result 931, Processing Time 0.038 seconds

Effect of Annealing in a Nitrogen Atmosphere on the Properties of In2O3 Films Deposited with RF Magnetron Sputtering (RF 마그네트론 스퍼터로 증착된 In2O3 박막의 질소분위기 열처리에 따른 특성변화)

  • Kong, Young-Min;Lee, Young-Jin;Heo, Sung-Bo;Lee, Hak-Min;Seo, Min-Su;Kim, Yu-Sung;Kim, Dae-Il
    • Korean Journal of Materials Research
    • /
    • v.22 no.1
    • /
    • pp.24-28
    • /
    • 2012
  • $In_2O_3$ films were deposited by RF magnetron sputtering on a glass substrate and then the effect of post deposition annealing in nitrogen atmosphere on the structural, optical and electrical properties of the films was investigated. After deposition, the annealing process was conducted for 30 minutes at 200 and $400^{\circ}C$. XRD pattern analysis showed that the as deposited films were amorphous. When the annealing temperature reached 200-$400^{\circ}C$, the intensities of the $In_2O_3$ (222) major peak increased and the full width at half maximum (FWHM) of the $In_2O_3$ (222) peak decreased due to the crystallization. The films annealed at $400^{\circ}C$ showed a grain size of 28 nm, which was larger than that of the as deposited amorphous films. The optical transmittance in the visible wavelength region also increased, while the electrical sheet resistance decreased. In this study, the films annealed at $400^{\circ}C$ showed the highest optical transmittance of 76% and also showed the lowest sheet resistance of $89{\Omega}/\Box$. The figure of merit reached a maximum of $7.2{\times}10^{-4}{\Omega}^{-1}$ for the films annealed at $400^{\circ}C$. The effect of the annealing on the work-function of $In_2O_3$ films was considered. The work-function obtained from annealed films at $400^{\circ}C$ was 7.0eV. Thus, the annealed $In_2O_3$ films are an alternative to ITO films for use as transparent anodes in OLEDs.

Characteristics of flexible IZO/Ag/IZO anode on PC substrate for flexible organic light emitting diodes (PC 기판위에 성막한 IZO/Ag/IZO 박막의 특성과 이를 이용하여 제작한 플렉시블 유기발광다이오드의 특성 분석)

  • Cho, Sung-Woo;Jeong, Jin-A;Bae, Jung-Hyeok;Moon, Jong-Min;Choi, Kwang-Hyuk;Kim, Han-Ki
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.381-382
    • /
    • 2007
  • IZO/Ag/IZO (IAI) anode films for flexible organic light emitting diodes (OLEDs) were grown on PC (polycarbonate) substrate using DC sputter (IZO) and thermal evaporator (Ag) systems as a function of Ag thickness. To investigate electrical and optical properties of IAI stacked films, 4-point probe and UV/Vis spectrometer were used, respectively. From a IAI stacked film with 12nm-thick Ag, sheet resistance of $6.9\;{\Omega}/{\square}$ and transmittance of above 82 % at a range of 500-550 nm wavelength were obtained. In addition, structural and surface properties of IAI stacked films were analyzed by XRD (X-ray diffraction) and SEM (scanning electron microscopy), respectively. Moreover, IAI stacked films showed dramatically improved mechanical properties when subjected to bending both as a function of number of cycles to a fixed radius. Finally, OLEDs fabricated on both flexible IAI stacked anode and conventional ITO/Glass were fabricated and, J-V-L characteristics of those OLEDs were compared by Keithley 2400.

  • PDF

Effects of The Substrate Temperature and The Thin film Thickness on The Properties of The Ga-doped ZnO Thin Film (기판온도 및 박막두께가 Ga-doped ZnO 박막의 특성에 미치는 영향)

  • Cho, Won-Jun;Kang, Seong-Jun;Yoon, Yung-Sup
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.1
    • /
    • pp.6-13
    • /
    • 2010
  • In this study, Ga-doped ZnO (GZO) thin films have been fabricated on Eagle 2000 glass substrates at various substrate temperatures $100{\sim}400^{\circ}C$ and thin film thickness by RF magnetron sputtering in order to investigate the structural, electrical, and optical properties of the GZO thin films. It is observed that all the thin films exhibit c-axis orientation and a (002) diffraction peak only. The GZO thin films, which were deposited at $T=300^{\circ}C$ and 400 nm, shows the highest (002) orientation, and the full width at half maximum (FWHM) of the (002) diffraction peak is $0.4^{\circ}$. AFM analysis shows that the formation of relatively smooth thin films are obtained. The lowest resistivity ($8.01{\times}10^{-4}\;{\Omega}cm$) and the highest carrier concentration ($3.59{\times}10^{20}\;cm^{-3}$) are obtained in the GZO thin films deposited at $T=300^{\circ}C$ and 400 nm. The optical transmittance in the visible region is approximately 80 %, regardless of process conditions. The optical band-gap shows the slight blue-shift with increase in doping which can be explained by the Burstein-Moss effect.

Optical properties of Nb2O5 thin films prepared by ion beam assisted deposition (이온빔 보조 증착 Nb2O5 박막의 광학적 특성)

  • 우석훈;남성림;정부영;황보창권;문일춘
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.2
    • /
    • pp.105-112
    • /
    • 2002
  • We studied the optical and structural properties of conventional and ion-beam-assisted-deposition (IBAD) Nb$_2$O$_{5}$ films which were evaporated by an electron beam gun. The vacuum-to-air spectral shift and the cross sectional SEM images of the Nb$_2$O$_{5}$ films were investigated. The results show that the IBAD Nb$_2$O$_{5}$ films have a higher packing density than the conventional Nb$_2$O$_{5}$ films. The average refractive index of IBAD Nb$_2$O$_{5}$ films was increased, while the extinction coefficient was decreased compared with the conventional films. As the oxygen flow was increased, the average refractive index and extinction coefficient of the conventional and IBAD films decreased. Both the conventional and IBAD Nb$_2$O$_{5}$ films showed inhomogeneity in refractive index, and the degree of inhomogeneity of the IBAD Nb$_2$O$_{5}$ films became larger as the ion current density was increased. All Nb$_2$O$_{5}$ films were found to be amorphous by x-ray diffraction (XRD) analysis, and hence the crystal structure of Nb$_2$O$_{5}$ films was not changed by IBAD.

Effect of Annealing Temperature on the Properties of NaNbO3:Eu3+ Phosphor Thin Films Deposited on Quartz Substrates (석영 기판 위에 증착된 NaNbO3:Eu3+ 형광체 박막의 특성에 열처리 온도가 미치는 영향)

  • Cho, Shinho
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.2
    • /
    • pp.96-101
    • /
    • 2021
  • NaNbO3:Eu3+ phosphor thin films were grown on quartz substrates by radio-frequency magnetron sputtering at a growth temperature of 100 ℃, with subsequent annealing at temperatures of 800, 900, and 1000 ℃. The effects of annealing temperature on the structural, morphological, and optical properties of the thin films were investigated. The NaNbO3:Eu3+ sputtering target was synthesized by a solid-state reaction of raw materials Na2CO3, Nb2O5, and Eu2O3. The X-ray diffraction patterns exhibited that the thin films had two mixed phases of NaNbO3 and Eu2O3. Surface morphologies were investigated by using field emission-scanning electron microscopy and indicated that the grains of the thin film annealed at 1000 ℃ showed irregular shapes with an average size of approximately 300 nm. The excitation spectra of Eu3+-doped NaNbO3 thin film consisted of a strong charge transfer band centered at 304 nm in the range of 240-350 nm and two weak peaks at 395 and 462 nm, respectively, resulting from the 7F05L6 and 7F05H2 transitions of Eu3+ ions. The emission spectra under excitation at 304 nm exhibited an intense red band centered at 614 nm and two weak bands at 592 and 681 nm. As the annealing temperature increased from 800 ℃ to 1000 ℃, the intensities of all the emission bands and the band gap energies gradually increased. These results indicate that the higher annealing temperature enhance the luminescent properties of NaNbO3:Eu3+ thin films.

Effects of Film Thickness and Post-Annealing Temperature on Properties of the High-Quality ITO Thin Films with RF Sputtering Without Oxygen (산소 유입 없이 RF 스퍼터로 증착한 고품질 ITO 박막의 두께와 열처리 온도에 따른 박막의 특성 변화)

  • Jiha Seong;Hyungmin Kim;Seongmin Shin;Kyunghwan Kim;Jeongsoo Hong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.3
    • /
    • pp.253-260
    • /
    • 2024
  • In this study, ITO thin films were fabricated on a glass substrate at different thicknesses without introducing oxygen using RF sputtering system. The structural, electrical, and optical properties were evaluated at various thicknesses ranging from 50 to 300 mm. As the thickness of deposited ITO thin film become thicker from 50 to 100 mm, carrier concentration, mobility, and band gap energy also increased while the resistivity and transmittance decreased in the visible light region. When the film thickness increased from 100 to 300 mm, the carrier concentration, mobility, and band gap energy decreased while the resistivity and transmittance increased. The optimum electrical properties were obtained for the ITO film 100 nm. After optimizing the thickness, the ITO thin films were post-annealed at different temperatures ranging from 100 to 300℃. As the annealing temperature increased, the ITO crystal phase became clearer and the grain size also increased. In particular, the ITO thin film annealed at 300℃ indicated high carrier concentration (4.32 × 1021 cm-3), mobility (9.01 cm2/V·s) and low resistivity (6.22 × 10-4 Ω·cm). This means that the optimal post-annealing temperature is 300℃ and this ITO thin film is suitable for use in solar cells and display application.

Effect of Slag Particle Size and Volume Fraction on Mechanical Properties of Slag Reinforced Composite (슬래그 입자의 크기 및 체적비에 따른 슬래그 입자강화 복합재료의 기계적 특성 연구)

  • Nam, Ji-Hoon;Chun, Heoung-Jae;Hong, Ik-Pyo
    • Composites Research
    • /
    • v.26 no.4
    • /
    • pp.218-222
    • /
    • 2013
  • This study demonstrated that a slag, an industrial solid waste, can be used as a structural reinforcement. The mechanical properties(tensile strength and Elastic modulus) of slag reinforced composite(SRC) was investigated as functions of slag particle size (8~12 ${\mu}m$ and 12~16 ${\mu}m$) and volume fraction (0-40 vol.%). In order to investigate the interface and a degree of particle dispersion which have an effect on mechanical properties, optical microscopic images were taken. The results of tensile tests showed that the tensile strength decreased with an increase in slag volume fraction and particle size. The elastic modulus increased with an increase in slag volume fraction and particle size except for 30 vol.% SRC. The tensile strength decreased with an increase in slag particle size. The microscopic picture showed SRC has fine degree of particle dispersion at low slag volume fraction. SRC has a good interface at every volume fraction. However particle cluster was incorporated with an increase in slag volume fraction.

Vision-based dense displacement and strain estimation of miter gates with the performance evaluation using physics-based graphics models

  • Narazaki, Yasutaka;Hoskere, Vedhus;Eick, Brian A.;Smith, Matthew D.;Spencer, Billie F.
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.709-721
    • /
    • 2019
  • This paper investigates the framework of vision-based dense displacement and strain measurement of miter gates with the approach for the quantitative evaluation of the expected performance. The proposed framework consists of the following steps: (i) Estimation of 3D displacement and strain from images before and after deformation (water-fill event), (ii) evaluation of the expected performance of the measurement, and (iii) selection of measurement setting with the highest expected accuracy. The framework first estimates the full-field optical flow between the images before and after water-fill event, and project the flow to the finite element (FE) model to estimate the 3D displacement and strain. Then, the expected displacement/strain estimation accuracy is evaluated at each node/element of the FE model. Finally, methods and measurement settings with the highest expected accuracy are selected to achieve the best results from the field measurement. A physics-based graphics model (PBGM) of miter gates of the Greenup Lock and Dam with the updated texturing step is used to simulate the vision-based measurements in a photo-realistic environment and evaluate the expected performance of different measurement plans (camera properties, camera placement, post-processing algorithms). The framework investigated in this paper can be used to analyze and optimize the performance of the measurement with different camera placement and post-processing steps prior to the field test.

Improving the Efficiency of SnS Thin Film Solar Cells by Adjusting the Mg/(Mg+Zn) Ratio of Secondary Buffer Layer ZnMgO Thin Film (2차 버퍼층 ZnMgO 박막의 Mg/(Mg+Zn) 비율 조절을 통한 SnS 박막 태양전지 효율 향상)

  • Lee, Hyo Seok;Cho, Jae Yu;Youn, Sung-Min;Jeong, Chaehwan;Heo, Jaeyeong
    • Korean Journal of Materials Research
    • /
    • v.30 no.10
    • /
    • pp.566-572
    • /
    • 2020
  • In the recent years, thin film solar cells (TFSCs) have emerged as a viable replacement for crystalline silicon solar cells and offer a variety of choices, particularly in terms of synthesis processes and substrates (rigid or flexible, metal or insulator). Among the thin-film absorber materials, SnS has great potential for the manufacturing of low-cost TFSCs due to its suitable optical and electrical properties, non-toxic nature, and earth abundancy. However, the efficiency of SnS-based solar cells is found to be in the range of 1 ~ 4 % and remains far below those of CdTe-, CIGS-, and CZTSSe-based TFSCs. Aside from the improvement in the physical properties of absorber layer, enormous efforts have been focused on the development of suitable buffer layer for SnS-based solar cells. Herein, we investigate the device performance of SnS-based TFSCs by introducing double buffer layers, in which CdS is applied as first buffer layer and ZnMgO films is employed as second buffer layer. The effect of the composition ratio (Mg/(Mg+Zn)) of RF sputtered ZnMgO films on the device performance is studied. The structural and optical properties of ZnMgO films with various Mg/(Mg+Zn) ratios are also analyzed systemically. The fabricated SnS-based TFSCs with device structure of SLG/Mo/SnS/CdS/ZnMgO/AZO/Al exhibit a highest cell efficiency of 1.84 % along with open-circuit voltage of 0.302 V, short-circuit current density of 13.55 mA cm-2, and fill factor of 0.45 with an optimum Mg/(Mg + Zn) ratio of 0.02.

Deposition of Indium Tin Oxide films on Polycarbonate substrates by Ion-Assisted deposition (IAD)

  • Cho, Jn-sik;Han, Young-Gun;Park, Sung-Chang;Yoon, Ki-Hyun;Koh, Seok-Keun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.98-98
    • /
    • 1999
  • Highly transparent and conducting tin-doped indium oxide (ITO) films were deposited on polycarbonate substrate by ion-assited deposition. Low substrate temperature (<10$0^{\circ}C$) was maintained during deposition to prevent the polycarbonate substrate from be deformed. The influence of ion beam energy, ion current density, and tin doping, on the structural, electrical and optical properties of deposited films was investigated. Indium oxide and tin-doped indium oxide (9 wt% SnO2) sources were evaporated with assisting ionized oxygen in high vacuum chamber at a pressure of 2$\times$10-5 torr and deposition temperature was varied from room temperature to 10$0^{\circ}C$. Oxygen gas was ionized and accelerated by cold hallow-cathode type ion gun at oxygen flow rate of 1 sccm(ml/min). Ion bea potential and ion current of oxygen ions was changed from 0 to 700 V and from 0.54 to 1.62 $\mu$A. The change of microstructure of deposited films was examined by XRD and SEM. The electrical resistivity and optical transmittance were measured by four-point porbe and conventional spectrophotometer. From the results of spectrophotometer, both the refractive index and the extinction coefficient were derived.

  • PDF