DOI QR코드

DOI QR Code

Effects of Film Thickness and Post-Annealing Temperature on Properties of the High-Quality ITO Thin Films with RF Sputtering Without Oxygen

산소 유입 없이 RF 스퍼터로 증착한 고품질 ITO 박막의 두께와 열처리 온도에 따른 박막의 특성 변화

  • Jiha Seong (Department of Electrical Engineering, Gachon University) ;
  • Hyungmin Kim (Department of Electrical Engineering, Gachon University) ;
  • Seongmin Shin (Department of Electrical Engineering, Gachon University) ;
  • Kyunghwan Kim (Department of Electrical Engineering, Gachon University) ;
  • Jeongsoo Hong (Department of Electrical Engineering, Gachon University)
  • Received : 2024.02.10
  • Accepted : 2024.02.22
  • Published : 2024.05.01

Abstract

In this study, ITO thin films were fabricated on a glass substrate at different thicknesses without introducing oxygen using RF sputtering system. The structural, electrical, and optical properties were evaluated at various thicknesses ranging from 50 to 300 mm. As the thickness of deposited ITO thin film become thicker from 50 to 100 mm, carrier concentration, mobility, and band gap energy also increased while the resistivity and transmittance decreased in the visible light region. When the film thickness increased from 100 to 300 mm, the carrier concentration, mobility, and band gap energy decreased while the resistivity and transmittance increased. The optimum electrical properties were obtained for the ITO film 100 nm. After optimizing the thickness, the ITO thin films were post-annealed at different temperatures ranging from 100 to 300℃. As the annealing temperature increased, the ITO crystal phase became clearer and the grain size also increased. In particular, the ITO thin film annealed at 300℃ indicated high carrier concentration (4.32 × 1021 cm-3), mobility (9.01 cm2/V·s) and low resistivity (6.22 × 10-4 Ω·cm). This means that the optimal post-annealing temperature is 300℃ and this ITO thin film is suitable for use in solar cells and display application.

Keywords

Acknowledgement

이 연구는 2023년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원(RS-2023-00227306) 및 2022년도 정부(산업통상자원부)의 재원으로 한국산업기술진흥원의 지원을 받아 수행된 연구임(P0012451, 2022년 산업혁신인재성장지원사업).

References

  1. Z. Ghorannevis, E. Akbarnejad, and M. Ghoranneviss, J. Theor. Appl. Phys., 9, 285 (2015). doi: https://doi.org/10.1007/s40094-015-0187-3
  2. F. Wang, M. Z. Wu, Y. Y. Wang, Y. M. Yu, X. M. Wu, and L. J. Zhuge, Vacuum, 89, 127 (2013). doi: https://doi.org/10.1016/j.vacuum.2012.02.040
  3. Z. Z. You and G. J. Hua, J. Alloys Compd., 530, 11 (2012). doi: https://doi.org/10.1016/j.jallcom.2012.03.078
  4. T. S. Sathiaraj, Microelectron. J., 39, 1444 (2008). doi: https://doi.org/10.1016/j.mejo.2008.06.081
  5. J. Hotovy, J. Hupkes, W. Bottler, E. Marins, L. Spiess, T. Kups, V. Smirnov, I. Hotovy, and J. Kovac, Appl. Surf. Sci., 269, 81 (2013). doi: https://doi.org/10.1016/j.apsusc.2012.10.180
  6. S. I. Kim, K. W. Lee, B. B. Sahu, and J. G. Han, Jpn. J. Appl. Phys., 54, 090301 (2015). doi: https://doi.org/10.7567/JJAP.54.090301
  7. T. Maruyama and K. Fukui, Thin Solid Films, 203, 297 (1991). doi: https://doi.org/10.1016/0040-6090(91)90137-M
  8. J. H. Kim, K. A. Jeon, G. H. Kim, and S. Y. Lee, Appl. Surf. Sci., 252, 4834 (2006). doi: https://doi.org/10.1016/j.apsusc.2005.07.134
  9. L. Kerkache, A. Layadi, E. Dogheche, and D. Remiens, J. Phys. D: Appl. Phys., 39, 184 (2005). doi: https://doi.org/10.1088/0022-3727/39/1/027
  10. J. Du, X. L. Chen, C. C. Liu, J. Ni, G. F. Hou, Y. Zhao, and X. D. Zhang, Appl. Phys. A, 117, 815 (2014). doi: https://doi.org/10.1007/s00339-014-8436-x
  11. A. Pokaipisit, M. Horprathum, and P. Limsuwan, Songklanakarin J. Sci. Technol., 31, 577
  12. J. O. Park, J. H. Lee, J. J. Kim, S. H. Cho, and Y. K. Cho, Thin Solid Films, 474, 127 (2005). doi: https://doi.org/10.1016/j.tsf.2004.08.172
  13. S. Fatimah, R. Ragadhita, D.F.A. Husaeni, and A.B.D. Nandiyanto, ASEAN J. Sci. Eng., 2, 65 (2022). doi: https://doi.org/10.17509/ajse.v2i1.37647
  14. J. M. Myoung, W.H.Y. Lee, I. Yun, and S.H.B. Lee, Jpn. J. Appl. Phys., 41, 28 (2002). doi: https://doi.org/10.1143/JJAP.41.28
  15. H. A. Mohamed, J. Phys. D: Appl. Phys., 40, 4234 (2007). doi: https://doi.org/10.1088/0022-3727/40/14/019
  16. S. N. Bai and T. Y. Tseng, Thin Solid Films, 515, 872 (2006). doi: https://doi.org/10.1016/j.tsf.2006.07.048
  17. J. Hong, K. I. Katsumata, and N. Matsushita, J. Electron. Mater., 45, 4875 (2016). doi: https://doi.org/10.1007/s11664-016-4751-7
  18. H. Kim, J. S. Horwitz, G. Kushto, A. Pique, Z. H. Kafafi, C. M. Gilmore, and D. B. Chrisey, J. Appl. Phys., 88, 6021 (2000). doi: https://doi.org/10.1063/1.1318368
  19. C. C. Chang, Thin Solid Films, 311, 304 (1997). doi: https://doi.org/10.1016/S0040-6090(97)00677-9
  20. S. Song, T. Yang, J. Liu, Y. Xin, Y. Li, and S. Han, Appl. Surf. Sci., 257, 7061 (2011). doi: https://doi.org/10.1016/j.apsusc.2011.03.009
  21. A. P. Amalathas and M. M. Alkaisi, J. Mater. Sci.: Mater. Electron., 27, 11064 (2016). doi: https://doi.org/10.1007/s10854-016-5223-9
  22. C. Guillen and J. Herrero, Vacuum, 80, 615 (2006). doi: https://doi.org/10.1016/j.vacuum.2005.10.006
  23. T. M. Hammad, Phys. Status Solidi, 206, 2128 (2009). doi: https://doi.org/10.1002/pssa.200881781