• Title/Summary/Keyword: Optical Displacement measurement

Search Result 150, Processing Time 0.037 seconds

A study on real time measuring microscopic movements in sinusoidal phase modulating interferometry using a laser diode (레이저 다이오드를 이용한 정현파 위상변조 간섭에 의한 실시간 극미세 진동 측정에 관한 연구)

  • 강성철;진상규;지철근
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1991.10a
    • /
    • pp.33-37
    • /
    • 1991
  • A now signal precessing system for real time displacement measurement in sinusoidal phase modulating interferometry is described. Although sinusoidal phase modulating interferometry is effective in measuring with high accuracy the displacement of an object, conventional signal processing takes along time. In this method, detection of the object's displacement is easily achieved by sampling the interference signal at those times that satisfy certain conditions and by processing the sampled signals with electric circuits in real time. the delay time of this signal processing system is < 45 $\mu$s. Specially in this paper we describe all electronic circuit and optical system design

  • PDF

Measurement Resolution of Edge Position in Digital Optical Imaging

  • Lee, Sang-Yoon;Kim, Seung-Woo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.49-55
    • /
    • 2000
  • The semiconductor industry relies on digital optical imaging for the overlay metrology of integrated circuit patterns. One critical performance demand in the particular application of digital imaging is placed on the edge resolution that is defined as the smallest detectable displacement of an edge from its image acquired in digital from. As the critical feature size of integrated circuit patterns reaches below 0.35 micrometers, the edge resolution is required to be less than 0.01 micrometers. This requirement is so stringent that fundamental behaviors of digital optical imaging need to be explored especially for the precision coordinate metrology. Our investigation reveals that the edge resolution shows quasi-random characteristics, not being simply deduced from relevant opto-electronic system parameters. Hence, a stochastic upper bound analysis is made to come up with the worst edge resolution that can statistically well predict actual indeterminate edge resolutions obtained with high magnification microscope objectives.

  • PDF

High resolution Linear Encoder Using Interference Fringe (레이저의 간섭무늬를 이용한 리니어 엔코더에 관한 연구)

  • 박윤창
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.4
    • /
    • pp.130-135
    • /
    • 1999
  • The main scale of linear encoder greatly effects on the precision of displacement measurement. Especially when needing the long range measurement the length of main scale should be increased accordingly. In this paper we propose a linear encoder that uses laser interference pattern as main scale for long range measurement. The linear encoder is similar to Michelson interferometer excepting that the reference mirror is tilted so as to obtain interference fringe pattern and a grating panel is attached on a quadratic photo diodes. Four kinds of grating having phase difference of 0. $\pi$/4, $\pi$/2, 3$\pi$/4 are arranged on the panel. The experimental results show that signals of quadratic photo diode A, B, {{{{ {-}atop {A } }}}} and {{{{ {- } atop {B } }}}} are cosine wavelike and successive signals have phase difference of $\pi$/4 each other. So the proposed method can achieve improved measurement resolution.

  • PDF

High resolution linear scale using collimated LASER (레이저를 이용한 광학식 리니어 스케일의 분해능 향상에 관한 연구)

  • 박윤창;정경민
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.170-174
    • /
    • 1999
  • The main scale of linear scale greatly affects on the precision of displacement measurement. Especially when needing the long range measurement, the length of main scale should be increased accordingly. In this paper, we propose a linear scale that uses laser interference pattern as main scale for long range measurement. The linear scale is similar to Michelson interferometer excepting that the reference mirror is tilted so as to obtain interference fringe pattern and a grating panel is attached on a quadratic photo diodes. Four kinds of grating having phase differences of 0, $\pi$ /4, $\pi$ /2, 3 $\pi$ /4 are arranged on the panel. The experimental results show that signals of - quadratic photo diode, A, B,$\overline{A}$ and $\overline{B}$ are cosine wavelike and successive signals have phase difference of $\pi$/4 each other. So the proposed method can achieve improved measurement resolution.

  • PDF

The Measurement of the Crack in CCT Specimen Using the Image Processing Techniques (영상처리기법을 이용한 CCT 시편 균열의 자동관측법에 관한 연구)

  • Lee, Hyun-Woo;Mun, Gi-Tae;Oh, Se-Jong;Jeong, Byung-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.3
    • /
    • pp.528-533
    • /
    • 1997
  • In the analysis of fatigue crack propagation behavior, the crack length is one of the most important factors. In the test of crack propagation, compliance method is widely used to detect crack length. The measurement of surface crack length is not so easy with compliance method. In this study, the image processing technique was applied to measure the surface crack length. CCD(Charge-coupled device) camera was used to observe the crack image and the computer program to detect crack length from stored crack image was developed. CCT(Center Cracked Tension) specimen was used to compare the compliance method with the image processing technique. The crack length which detected by the image processing techniques was found to be well consistent with that from the optical measurement.

Hetero-core Optical Fiber Exposure Sensor Module and Instrumentation Delay (헤테로코어 광파이버 노출형 센서모듈과 계측 지연현상)

  • Song, Young-Yong;Park, Eik-Tae;Lee, Hwan-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.6
    • /
    • pp.401-408
    • /
    • 2019
  • The objective of this study is to develop a new type of buried sensor module that can directly assess pre-stressed concrete by measuring strain using a hetero-core optical fiber sensor. In this regard, experiments were conducted to evaluate the performance of the sensor using an exposure sensor module. Based on the experimental results, when the values of the displacement control velocity were 0.12 mm/min and 1.80 mm/min, the corresponding delays in the measurement were 52.1 s and 2.6 s respectively, which indicated that the maximum delay between the two measurements was a factor of 19. Due to the measurement delay phenomena, the sensor module used in the experiments cannot be employed to check the real-time state of the structure. Thus, additional experiments were needed to develop a new sensor module that can measure the real-time state of the structure. To investigate the cause of the measurement delay phenomena, three experiments were conducted. It was confirmed that measurement delay is mainly attributed to frictional resistance. The measurement delay phenomena were not observed in the experiments using the friction-removed device.

Damage Assessment Technique for Bridge Structures By Moving Load Tests and Optical Displacement Measurements (광변위 계측과 주행하중시험기법에 의한 교량구조의 손상도 추정기법)

  • Lee, Hyeong-Jin;Kim, Jong-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.769-777
    • /
    • 2015
  • In this paper, a damage assessment technique using a moving load test and optical sensors was studied to overcome the deficiency of measurement information in bridge maintenance. Continuous displacements by applying the reciprocal theorem to the test can make the assessment simpler and more practical. Numerical and experimental studies were performed to show the efficiency and accuracy of the proposed technique as well as the possibility of a more realistic assessment for large infrastructure. The results showed that the assessed damage levels are quite accurate, and similar to the exact values in actual damage locations, even in the experiments. The proposed technique is useful and practical for both detecting damage locations and damage quantities.

Passive 3D motion optical data in shaking table tests of a SRG-reinforced masonry wall

  • De Canio, Gerardo;de Felice, Gianmarco;De Santis, Stefano;Giocoli, Alessandro;Mongelli, Marialuisa;Paolacci, Fabrizio;Roselli, Ivan
    • Earthquakes and Structures
    • /
    • v.10 no.1
    • /
    • pp.53-71
    • /
    • 2016
  • Unconventional computer vision and image processing techniques offer significant advantages for experimental applications to shaking table testing, as they allow the overcoming of most typical problems of traditional sensors, such as encumbrance, limitations in the number of devices, range restrictions and risk of damage of the instruments in case of specimen failure. In this study, a 3D motion optical system was applied to analyze shake table tests carried out, up to failure, on a natural-scale masonry structure retrofitted with steel reinforced grout (SRG). The system makes use of wireless passive spherical retro-reflecting markers positioned on several points of the specimen, whose spatial displacements are recorded by near-infrared digital cameras. Analyses in the time domain allowed the monitoring of the deformations of the wall and of crack development through a displacement data processing (DDP) procedure implemented ad hoc. Fundamental frequencies and modal shapes were calculated in the frequency domain through an integrated methodology of experimental/operational modal analysis (EMA/OMA) techniques with 3D finite element analysis (FEA). Meaningful information on the structural response (e.g., displacements, damage development, and dynamic properties) were obtained, profitably integrating the results from conventional measurements. Furthermore, the comparison between 3D motion system and traditional instruments (i.e., displacement transducers and accelerometers) permitted a mutual validation of both experimental data and measurement methods.

Study on the Improvement of the Image Analysis Speed in the Digital Image Correlation Measurement System for the 3-Point Bend Test

  • Choi, In Young;Kang, Young June;Hong, Kyung Min;Kim, Seong Jong;Lee, Gil Dong
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.523-530
    • /
    • 2014
  • Machine material and structural strain are critical factors for appraising mechanical properties and safety. Particularly in three and four-point bending tests, which appraise the deflection and flexural strain of an object due to external force, measurements are made by the crosshead movement or deflection meter of a universal testing machine. The Digital Image Correlation (DIC) method is one of the non-contact measurement methods. It uses the image analyzing method that compares the reference image with the deformed image for measuring the displacement and strain of the objects caused by external force. Accordingly, the advantage of this method is that the object's surface roughness, shape, and temperature have little influence. However, its disadvantage is that it requires extensive time to compare the reference image with the deformed image for measuring the displacement and strain. In this study, an algorithm is developed for DIC that can improve the speed of image analysis for measuring the deflection and strain of an object caused by a three-point bending load. To implement this algorithm for improving the speed of image analysis, LabVIEW 2010 was used. Furthermore, to evaluate the accuracy of the developed fast correlation algorithm, the deflection of an aluminum specimen under a three-point bending load was measured by using the universal test machine and DIC measurement system.

A Study on the Accelerometer for the Acceleration and Inclination Estimation of Structures using Double-FBG Optical Sensors (이중 FBG 광섬유센서를 이용한 구조물 가속도 및 기울기 측정 장치에 관한 연구)

  • Lee, Geum-Suk;Ahn, Soo-Hong;Shon, Su-Deok;Lee, Seung-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.1
    • /
    • pp.85-94
    • /
    • 2016
  • In this study, an acceleration sensor that has optical fibers to measure the inclination and acceleration of a structure through contradictory changes in two-component FBG sensors was examined. The proposed method was to ensure precise measurement through the unification of the deformation rate sensor and the angular displacement sensor. A high sensitivity three-axis accelerometer was designed and prepared using this method. To verify the accuracy of the accelerometer, the change in wavelength according to temperature and tension was tested. Then, the change in wavelength of the prepared accelerometer according to the sensor angle, and that of the sensor according to the change in ambient temperature were measured. According to the test results on the FBG-based vibration sensor that was developed using a high-speed vibrator, the range in measurement was 0.7 g or more, wavelength sensitivity, 2150 pm/g or more, and the change in wavelength change, $9.5pm/^{\circ}C$.