Browse > Article
http://dx.doi.org/10.9712/KASS.2016.16.1.085

A Study on the Accelerometer for the Acceleration and Inclination Estimation of Structures using Double-FBG Optical Sensors  

Lee, Geum-Suk (FBG Korea Inc.)
Ahn, Soo-Hong (Acrovision Inc.)
Shon, Su-Deok (School of Arch. Eng., Korea Univ. of Tech. & Education)
Lee, Seung-Jae (School of Arch. Eng., Korea Univ. of Tech. & Education)
Publication Information
Journal of Korean Association for Spatial Structures / v.16, no.1, 2016 , pp. 85-94 More about this Journal
Abstract
In this study, an acceleration sensor that has optical fibers to measure the inclination and acceleration of a structure through contradictory changes in two-component FBG sensors was examined. The proposed method was to ensure precise measurement through the unification of the deformation rate sensor and the angular displacement sensor. A high sensitivity three-axis accelerometer was designed and prepared using this method. To verify the accuracy of the accelerometer, the change in wavelength according to temperature and tension was tested. Then, the change in wavelength of the prepared accelerometer according to the sensor angle, and that of the sensor according to the change in ambient temperature were measured. According to the test results on the FBG-based vibration sensor that was developed using a high-speed vibrator, the range in measurement was 0.7 g or more, wavelength sensitivity, 2150 pm/g or more, and the change in wavelength change, $9.5pm/^{\circ}C$.
Keywords
Fiber Bragg Grating; Optical fiber sensor; Acceleration; Inclination of structures; Double-FBG sensors;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Zhou, W., Dong, X., Ni, K., Chan, C.C. and Shum, P., "Temperature-insensitive accelerometer based on a strain-chirped FBG,"Sensors and Actuators A: Physical, Vol. 157, No. 1, pp. 15-18, 2010   DOI
2 Song, G.D., Wang, J.Y., Liu, T.Y., Wang, C. and Lu, L. "Optical fiber grating strain acceleration sensors ground vibration experimental research," Procedia Engineering, Vol. 26, pp. 784-793, 2011   DOI
3 Antunes, P., Lima, H., Varum, H. and Andre, P., "Optical fiber sensors for static and dynamic health monitoring of civil engineering infrastructures: Abode wall case study," Measurement, Vol. 45, No. 7, pp. 1695-1705, 2012   DOI
4 Khan, M.M., Panwar, N. and Dhawan, R., "Modified cantilever beam shaped FBG based accelerometer with self temperature compensation," Sensors and Actuators A: Physical, Vol. 205, pp. 79-85, 2014   DOI
5 Zhang, X., Rong, Q., Sun, H. Yang, S., Yuan L. and Hu, M, "Low-frequency fiber bragg grating accelerometer based on a double-semicircle cantilever," Optical Fiber Technology, Vol. 20, pp. 190-193, 2014   DOI
6 Wang, J., Yu, Y., Chen, Y., Luo, H. and Meng, Z., "Research of a double fiber Bragg gratings vibration sensor with temperature and cross axis insensitive,", Optik-International Journal for Light and Electron Optics, Vol. 126, No. 7, pp. 749-753, 2015   DOI
7 Zhang, Y., Qiao, X., Liu, D., Gao, H., Shao, M. and Wang, X., "Study on a fiber Bragg grating accelerometer based on compliant cylinder," Optical Fiber Technology, Vol. 26, pp. 229-233, 2015   DOI
8 Rao, Y.J., Henderson, P.J., Jackson, D.A., Zhang, L. and Bennion, I., "Simultaneous strain, temperature and vibration measurement using a multiplexed in-fibre- Bragg-grating/fibre-Fabry-Perot sensor system," Electronics Letters, Vol. 33, No. 24, pp.2063-2064, 1997   DOI
9 Lopez-Higuera, J.M., Morante, M.A. and Cobo, A., "Simple Low-Frequency Optical Fiber Accelerometer with Large Rotating Machine Monitoring Applications," Journal of Lightwave Technology, Vol. 15, No. 7, pp. 1120-1130, 1997   DOI
10 Berkoff, T.A. and Kersey, A.D., "Experimental Demonstration of a Fiber Bragg Grating Accelerometer," IEEE Photonics Technology Letters, Vol. 8, No. 12, pp. 1677-1679, 1996   DOI
11 Mita, A., "Fiber Bragg Grating-Based Acceleration Sensors for Civil and Building Structures," International Workshop on Present and Future in Health Monitoring; Bauhous-Univ. Weinar, Germany, pp. 1-7, 2000
12 Lee, Y., Jo, J., Kwan, I., Seo, D. and Lee, N., "Acceleration Sensor Using Optical Fibers and Film Gratings," Journal of Optical Society of Korea, Vol. 19, No. 3, pp. 175-181, 2008
13 Lee, K., "Fiber-Optic Accelerometer by Mach-Zehnder Interferometer," Journal of Korean Institute of Communications and Information Sciences, Vol. 17, No. 10, pp. 1092-1099, 1992
14 Park, H., Choi, J. and Kim, Y., "Development of Fiber Optic Acclerometer for Third-Party Damage Detection," Journal of Korean Society of Mechanical Engineering, Vol. 25, No. 10, pp.1551-1558, 2001
15 Wu, B., Chen, C., Ding, G., Zhang, D. and Cui, Y., "Hybrid-integrated Michelson fiber optic accelerometer," Optical Engineering, Vol. 43, No. 2, pp. 313-318, 2004   DOI
16 Li, H.N., Li, D.S. and Song, G.B., "Recent applications of fiber optic sensors to health monitoring in civil engineering," Engineering Structures, Vol. 26, pp.1647-1657, 2004   DOI
17 Baldwin, C., Niemczuk, J., Kiddy, J. and Salter, T., "Review of Fiber Optic Accelerometers," IMAC XXIII Conference & Exposition on Structural Dynamics, 2005
18 Majumder, M., Gangopadhyay, T.K. and Chakraborty, A.K., "Fiber bragg gratings in structural health monitoring - Present status and applications," Sensors and Actuators A: Physical, pp.150-164, 2004
19 Zhang, Q., Zhu, T., Zhang, J.D. and Chiang, K.S., "Micro-fiber-based FBG sensor for simultaneous measurement of vibration and temperature," IEEE Photonics Technology Letters, Vol. 25, No. 18, pp.1751-1753, 2013   DOI
20 Jiang, S., Wang, J., Sui, Q., Ye, Q. and Wang, L., "Study of Three-Component FBG Vibration Sensor for Simultaneous Measurement of Vibration, Temperature and Verticality," Journal of Sensors 2015, Article ID 382865, 2015
21 Lee, S.J., Lee, G.S., Shon, S.D. and Moon, D.J., "FBG Strain Sensors for Creak Measurement Due to Hydration Heat in Massive Concrete," Advanced Materials Research, vol. 689, pp. 329-332, 2013   DOI
22 Choi, S.W., Park, K.H., Kim, Y.S. and Park, H.S., "A Numerical Study on the Strain Based Monitoring Method for Lateral Structural Response of Buildings using FBG Sensors," Computational Structural Engineering Institute of Korea, Vol. 26, No. 4, pp.263-269, 2013   DOI
23 Oh, B.K., Lee, J.H., Choi, S.W., Park, H.S. and Kim, Y.S., "An Estimation Method of Strain Distribution for Safety Monitoring of Multi-span Steel Beam Using FBG Sensor," Journal of the Korea Institute for Structural Maintenance and Inspection, Vol. 18, No. 1, pp.138-149, 2014   DOI
24 Chan, T.H.T., Yu, L., Tam, H.Y., Ni, Y.Q., Lin, S.Y., Chung, W.H. and Cheng, L.K., "Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge: Background and experimental observation," Engineering Structures, Vol. 33, pp.648-659, 2006
25 Torres, B., Paya-Zaforteza, I., Calderon, P.A. and Adam, J.M., "Analysis of the strain transfer in a new FBG sensor for Structural Health Monitoring," Engineering Structures, Vol. 33, pp.539-548, 2011   DOI
26 Kang, H., Bang, H., Hong, C. and Kim, C., "Simultaneous measurement of strain, temperature and vibration frequency using a fibre optic sensor," Measurement Science and Technology, Vol. 13, No. 8, pp.1191-1196, 2002   DOI
27 Somatomo, H., Tanaka, S. and Takahashi, N., "Vibration sensing of solid using long-period fiber grating," in 19th International Conference on Optical Fibre Sensors, vol. 7004 of Proceedings of SPIE, April 2008.