• Title/Summary/Keyword: Operating environment

Search Result 2,899, Processing Time 0.035 seconds

Hardware-Software Cosynthesis of Multitask Multicore SoC with Real-Time Constraints (실시간 제약조건을 갖는 다중태스크 다중코어 SoC의 하드웨어-소프트웨어 통합합성)

  • Lee Choon-Seung;Ha Soon-Hoi
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.9
    • /
    • pp.592-607
    • /
    • 2006
  • This paper proposes a technique to select processors and hardware IPs and to map the tasks into the selected processing elements, aming to achieve high performance with minimal system cost when multitask applications with real-time constraints are run on a multicore SoC. Such technique is called to 'Hardware-Software Cosynthesis Technique'. A cosynthesis technique was already presented in our early work [1] where we divide the complex cosynthesis problem into three subproblems and conquer each subproblem separately: selection of appropriate processing components, mapping and scheduling of function blocks to the selected processing component, and schedulability analysis. Despite good features, our previous technique has a serious limitation that a task monopolizes the entire system resource to get the minimum schedule length. But in general we may obtain higher performance in multitask multicore system if independent multiple tasks are running concurrently on different processor cores. In this paper, we present two mapping techniques, task mapping avoidance technique(TMA) and task mapping pinning technique(TMP), which are applicable for general cases with diverse operating policies in a multicore environment. We could obtain significant performance improvement for a multimedia real-time application, multi-channel Digital Video Recorder system and for randomly generated multitask graphs obtained from the related works.

Analysis of the Implementation of the Residential Improvement Project Considering Land and Building Characteristics - The Case of Busan Metropolitan City (토지 및 건축물특성에 따른 정비사업 추진 분석 - 부산광역시 사례를 중심으로 -)

  • Jang, Jin Hyeok;Moon, Jae Soon;Choi, Yeol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.2
    • /
    • pp.337-347
    • /
    • 2018
  • The government has been operating residential improvement projects through the "Act on the Maintenance and Improvement of Urban Areas and Dwelling Conditions for Residents" as a type of a remedial measure for deteriorated residential areas. However, in recent years, the residential improvement projects have experienced difficulties due to the effects of various factors including the slowdown in economic growth. After observing the depression in a number of projects, various studies have been carried out to investigate the causality and improve the promotion of the residential improvement projects. In the trend of research, this study aims to analyze the effects of land and building characteristics on the improvement projects of Busan Metropolitan City. The dependent variables of the study represent different phases of improvement project as specified in the "Act on the Maintenance and Improvement of Urban Areas and Dwelling Conditions for Residents". The independent variables represent land and building characteristics which refer to the criteria used in the designation process of maintenance area according to the act. The empirical analysis uses the ordered logit model. The results from the analysis suggest that geographical condition, factors related to the number of union members, factors related to the parcel price and condition of a location have impact on the promotion of the improvement project. The results of the analysis show that majority of the factors are related to the economic feasibility of the projects. Residential improvement project is a part of urban planning projects that rehabilitates deteriorated residential environment, and it is closely associated with the quality of life of public. Accordingly, we hope that such projects are reasonable and take effective approach to those with urgent needs rather than to focus on profitability. Also, potential administrative and economical loss should be avoided by taking necessary planning measures in advance.

Development of a Voice-activated Map Information Retrieval System based on MFC (MFC 기반 음성구동 수치지도정보 검색시스템의 구현)

  • Kim, Nag-Cheol;Kim, Tae-Soo;Jo, Myung-Hee;Chung, Hyun-Yeol
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.3 no.1
    • /
    • pp.69-77
    • /
    • 2000
  • In retrieving and analyzing digital map information using mouse or key strokes, it needs several times of repeated mouse operation for designating the range of study area. In this study, we proposed a voice activated map information retrieval system for eliminating such repetitions and we realized the system on the personal computer. The system was constructed in two ways - traditional OLE(object linking embedding) method and MFC(Microsoft fundamental class) method in controlling of window display for practical use. In the system performance evaluation, the retrieval data for digital map were consisted of 68 words uttered by 3 male persons which include attribute words and control words for Susung-gu area of Taegu city in a 1:5,000 map. As the results, we obtained the average 98.02% of recognition rate through on-line tests in the office environment and the operating speed of 5.39 seconds by OLE, 10.38 seconds by MFC. These results showed the possibility for practical use of information retrieval system using speech recognition in digital map.

  • PDF

A Study on Clogging and Water Quality Improvement in Floodplain Filtration with Flood/rest Raw-water Supply (범람/휴지식 홍수터여과에서 폐색현상 및 수질개선도 연구)

  • Kim, Hoh-Seok;Kim, Seung-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.2
    • /
    • pp.120-131
    • /
    • 2011
  • A pilot-scale experiment of floodplain filtration with a filtration depth of 3.6m was performed employing flood/rest type raw-water supply system in an effort to find ways to improve river water quality by additional treatments of discharged effluent from sewage treatment plant. Soil samples were taken from 3 sites including Gumi, Daegu and Gimhae along the Nakdong river. Reductions of infiltration rates following increases in operating time was investigated in each soil sample, along with the analysis of removal efficiencies of various pollutants according to different depths and infiltration rates. The results show incremental development of clogging on the soil surface with increases in operation time, and illustrate exponential decrease in the infiltration rate. The time required for the removal of the clog from the soil surface was longer than 2 weeks for all soil samples analyzed. The stable infiltration rates for soils were 5 m/day for Gumi and for Daegu and Gimhae was 1 m/day. In unsaturated soils dissolved oxygen levels increased following the increase of filtration depth, suggesting that alternating application of flood and rest for raw-water supply effectively keeps the soil environment aerobic. For all soils, the nature of pollutant removal depending on the depth of filtration remained the same regardless of the infiltration rate. Most of the BOD and turbidity were removed within 1.2 m, about 30% of COD was removed within 3.6m and was expected to be removed further with increases in filtration depth. Nitrification occurred near the surface of all soils; however there was no significant removal of nitrogen in the filtration depths tested in this study. Although removal rate of phosphorus was low for Gumi's soil, it was high enough for other soils, suggesting that the method developed in this study could significantly improve river water quality.

Optimization of Electrolysis Using Sacrificial Electrode for the Treatment of Electroless Nickel Plating Wastewater (희생전극을 이용한 무전해 니켈 도금 폐수의 전기분해처리 최적화)

  • Kim, Young-Shin;Jeon, Byeong-Han;Cho, Soon-Haing
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.4
    • /
    • pp.204-209
    • /
    • 2015
  • The effluent limit of nickel from electroplating wastewater has been strengthened from 5 mg/L to 3 mg/L from 2014. However, currently applied treatment process for nickel plating wastewater is unable to meet the effluent limit, most of the treatment concept conducted by treatment plant is dilution with other metal bearing wastewater. This can cause very significant impact to the environment of nickel contamination. With this connection, the feasibility test has been conducted with the use of electrolysis by using sacrificial electrodes. Experiments were conducted in synthetic and electroless nickel plating wastewater. Optimal condition of current density, pH were derived from the synthetic wastewater. It was found that the removal efficiency of nickel exceeded 94% at the operation condition of at pH 9 and the current density of $1{\sim}2mA/cm^2$. At this conditions, the iron sludge was generated very low amount. However, it was unsuccessful to meet the effluent limit by applying these treatment conditions to the real electroplating wastewater. This can be explained due to the matrix effect of other metals and anions contained real electroplating wastewater. From the result of further study, the optimal conditions for the real wastewater treatment were found out to be at pH 9, current density $6{\sim}7mA/cm^2$, for 5 minutes of operating time. At these conditions, 88% removal of nickel was achieved, which results the residual nickel concentration was below 3 mg/L.

Development of an 1-Dimensional Dynamic Numerical Model for BTX Removal Process Analysis by Gaseous-Biofilm Filtration (기체상-생물막 여과 공법의 BTX 제거 공정 해석을 위한 1차원 동적 수치모델 개발)

  • Kim, Yeong-Kwan;Choi, Sung-Chan;Kim, Seog-Ku;Lee, Yong-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.12
    • /
    • pp.689-695
    • /
    • 2015
  • A biofilm filtration for the removal of gaseous pollutants has been recognized as a process with a complex interaction between the gas flow characteristics and the process operating variables. This study aims to develop an one dimensional dynamic numerical model which can be utilized as a tool for the analysis of biofilm filtration process operated in plug flow mode. Since, in a plug flow system, minor environmental changes in a gaseous unit process cause a drastic change in reaction and the interaction between the pollutants is an influencing factor, plug flow system was generalized in developing the model. For facilitation of the model development, dispersion was simplified based on the principles of material balance. Several reactions such as competition, escalation, and control between the pollutants were included in the model. The applicability of the developed model was evaluated by taking the calibration and verification steps on the experimental data performed for the removal of BTX at both low and high flow concentration. The model demonstrated a correlation coefficient ($R^2$) greater than 0.79 under all the experimental conditions except for the case of toluene at high flow condition, which suggested that this model could be used for the generalized gaseous biofilm plug flow filtration system. In addition, this model could be a useful tool in analyzing the design parameters and evaluating process efficiency of the experiments with substantial amount of complexity and diversity.

A Study on Improving the Organizational Structure for University Libraries with Service Paradigm Shifts (서비스 패러다임의 변화에 따른 대학도서관의 조직개편에 관한 연구)

  • 신은자;이해영
    • Journal of the Korean Society for information Management
    • /
    • v.18 no.2
    • /
    • pp.273-294
    • /
    • 2001
  • In recent years, changes in the university libraries environment have led to increased emphases on improving or restructuring the organizational structures of university libraries. Technology, trends toward access over ownership, user focus, and restructuring in higher education are some of the major factors contributing to these changes. The users' new information retrieving behavior are emerged from the developments in information technology with new media and from the competitive research environments, and thus this trend has led to the gradual increase of collection arrangement by subjects rather than by forms, particularly from 1995 in Korean universities' libraries. Users especially in university libraries who are frequently seeking information on the specific subject, are going to find a room accoinmodating all forms of information on the subject, that is, one-stop information service. As a result, subject division structure have adopted as a new organizational structure in Korea. Our survey shows 34 out of 73 university libraries in Korea is taking this structure of which collections are arranged by subjects, while the rest of them are operating with a traditional organizational structure by forms focusing on keeping of collection management. In the future, university libraries with traditional organizational structure will be moving towards the subject division structure which is a recommended one by this study.

  • PDF

Heavy Metal Removal Efficiency in Accordance with Changes in Acid Concentrations in a Micro-nano Bubble Soil Washing System and Pickling Process (마이크로나노버블 토양세척시스템 및 산세척 복합공정의 산 농도변화에 따른 중금속 제거효율에 관한 연구)

  • Jung, Jin-Hee;Choi, Ho-Eun;Jung, Byung-Gil;Sung, Nak-Chang;Yi, Gi-Chul;Choi, Young-Ik
    • Journal of Environmental Science International
    • /
    • v.26 no.1
    • /
    • pp.23-28
    • /
    • 2017
  • This study was aimed at determining the changes in heavy metal removal efficiency at different acid concentrations in a micro-nanobubble soil washing system and pickling process that is used to dispose of heavy metals. For this purpose, the initial and final heavy metal concentrations were measured to calculate the heavy metal removal efficiency 5, 10, 20, 30, 60, and 120 min into the experiment. Soil contaminated by heavy metals and extracted from 0~15 cm below the surface of a vehicle junkyard in the city of U was used in the experiment. The extracted soil was air-dried for 24 h, after which a No. 10 (2 mm) was used as a filter to remove large particles and other substances from the soil as well as to even out the samples. As for the operating conditions, the air inflow rate in the micro-nano bubble soil washing system was fixed at 2 L/min,; with the concentration of hydrogen peroxide being adjusted to 5%, 10%, or 15%. The treatment lasted 120 min. The results showed that when the concentration of hydrogen peroxide was 5%, the efficiency of Zn removal was 27.4%, whereas those of Ni and Pb were 28.7% and 22.8%, respectively. When the concentration of hydrogen peroxide was 10%, the efficiency of Zn removal was 38.7%, whereas those of Ni and Pb were 42.6% and 28.6%, respectively. When the concentration of hydrogen peroxide was 15%, the efficiency of Zn removal was 49.7%, whereas those of Ni and Pb were 57.1% and 42.6%, respectively. Therefore, the efficiency of removal of all three heavy metals was the highest when the hydrogen peroxide concentration was 15%.

Evaluation of the KASI Detector Performance Test System Using an Andor iKon M CCD Camera

  • Yu, Young Sam;Kim, Jinsol;Park, Chan;Jeong, Woong-Seob;Kim, Minjin;Choi, Seonghwan;Park, Sung-Joon
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.3
    • /
    • pp.201-210
    • /
    • 2018
  • The characterization of detectors installed in space- and ground-based instruments is important to evaluate the system performance. We report the development of a detector performance test system for astronomical applications using the Andor iKon M CCD camera. The performance test system consists of a light source, monochromator, integrating sphere, and power meters. We adopted the Czerny-Tuner monochromator with three ruled gratings and one mirror, which covers a spectral range of 200-9,000 nm with a spectral resolution of ~1 nm in the visible region. Various detector characteristics, such as the quantum efficiency, sensitivity, and noise, can be measured in wide wavelength ranges from the visible to mid-infrared regions. We evaluated the Korea Astronomy and Space Science Institute (KASI) detector performance test system by using the performance verification of the Andor iKon-M CCD camera. The test procedure includes measurements of the conversion gain ($2.86e^-/ADU$), full well capacity ($130K\;e^-$), nonlinearity, and pixel defects. We also estimated the read noise, dark current, and quantum efficiency as a function of the temperature. The lowest measured read noise is $12e^-$. The dark current at 223 K was determined to be $7e^-/s/pix$ and its doubling temperature is $5.3^{\circ}C{\pm}0.2^{\circ}C$ at an activation energy of 0.6 eV. The maximum quantum efficiency at 223 K was estimated to be $93%{\pm}2%$. We proved that the quantum efficiency is sensitive to the operating temperature. It varies up to 5 % in the visible region, while the variation increases to 30 % in the near-infrared region. Based on the comparison of our results with the test report by the vendor, we conclude that our performance test results are consistent with those from the vendor considering the test environment. We also confirmed that the KASI detector performance test system is reliable and our measurement method and analysis are accurate.

Optimization of the Unducted Auxiliary Ventilation for Large-Opening Underground Limestone Mines (대단면 지하 석회석 광산내 무풍관 국부통기 최적화 연구)

  • Nguyen, Van Duc;Lee, Chang Woo
    • Tunnel and Underground Space
    • /
    • v.29 no.6
    • /
    • pp.480-507
    • /
    • 2019
  • This paper aims at optimizing the auxiliary ventilation system in large-opening limestone mines with unducted fans. An extensive CFD and also site study were carried out for optimization at the blind entries. The fan location, operating mode, and layout are the parameters for optimization. Since the jet stream discharged from the auxiliary fan is flowing faster than 15 m/s in most of the cases, the stream collides with floor, sides or roof and even with the jet stream generated from the other fan placed upstream. Then, it is likely to lose a large portion of its inertial force and then its ventilation efficiency drops considerably. Therefore, the optimal fan installation interval is defined in this study as an interval that maximizes the uninterrupted flowing distance of the jet stream, while the cross-sectional installation location can be optimized to minimize the energy loss due to possible collision with the entry sides. Consequently, the optimization of the fan location will improve ventilation efficiency and subsequently the energy cost. A number of different three-dimensional computational domains representing a full-scale underground space were developed for the CFD study. The velocity profiles and the CO concentrations were studied to design and optimize the auxiliary ventilation system without duct and at the same time mine site experiments were carried out for comparison purposes. The ultimate goal is to optimize the auxiliary ventilation system without tubing to provide a reliable, low-cost and efficient solution to maintain the clean and safe work environment in local large-opening underground limestone mines.