DOI QR코드

DOI QR Code

Development of an 1-Dimensional Dynamic Numerical Model for BTX Removal Process Analysis by Gaseous-Biofilm Filtration

기체상-생물막 여과 공법의 BTX 제거 공정 해석을 위한 1차원 동적 수치모델 개발

  • Kim, Yeong-Kwan (Department of Environmental Engineering, Kangwon National University) ;
  • Choi, Sung-Chan (Department of Environmental Science & Biotechnology, Hallym University) ;
  • Kim, Seog-Ku (Environmental and Plant Engineering Research Institute, Korea Institute of Civil Engineering and Building Technology) ;
  • Lee, Yong-Seok (Department of Health & Environment. Hallym Polytechnic University)
  • 김영관 (강원대학교 환경공학과) ;
  • 최성찬 (한림대학교 환경생명공학과) ;
  • 김석구 (한국건설기술연구원 환경.플랜트연구소) ;
  • 이용석 (한림성심대학교 보건환경과)
  • Received : 2015.12.07
  • Accepted : 2015.12.28
  • Published : 2015.12.31

Abstract

A biofilm filtration for the removal of gaseous pollutants has been recognized as a process with a complex interaction between the gas flow characteristics and the process operating variables. This study aims to develop an one dimensional dynamic numerical model which can be utilized as a tool for the analysis of biofilm filtration process operated in plug flow mode. Since, in a plug flow system, minor environmental changes in a gaseous unit process cause a drastic change in reaction and the interaction between the pollutants is an influencing factor, plug flow system was generalized in developing the model. For facilitation of the model development, dispersion was simplified based on the principles of material balance. Several reactions such as competition, escalation, and control between the pollutants were included in the model. The applicability of the developed model was evaluated by taking the calibration and verification steps on the experimental data performed for the removal of BTX at both low and high flow concentration. The model demonstrated a correlation coefficient ($R^2$) greater than 0.79 under all the experimental conditions except for the case of toluene at high flow condition, which suggested that this model could be used for the generalized gaseous biofilm plug flow filtration system. In addition, this model could be a useful tool in analyzing the design parameters and evaluating process efficiency of the experiments with substantial amount of complexity and diversity.

부착성 미생물을 이용하여 기체상 오염물질을 여과 방식으로 처리하는 생물 공정은 기체상의 흐름 특성과 공정 인자간 관련성이 매우 복잡하게 작용하는 특징을 가진다. 본 연구는 기체상 공정의 특성으로 미세한 변화에도 반응이 급변하는 현상과 물질간 반응관계의 중요성을 고려하여 일반화된 plug flow계 반응조의 공정 분석 도구로 활용 가능한 1차원 동적 수치해석 모델을 개발하였다. 개발 모델은 물질수지 원리를 기초하여 확산을 단순화하고 물질간 경쟁, 상승, 억제 반응 등 상호 반응관계를 반영하여 구성이 용이하도록 하였다. 개발 모델의 적용성 평가는 저속과 고속으로 구분된 BTX 제거 실험에 대하여 보정과 검정 절차로 수행되었다. 개발 모델은 고속 조건의 toluene을 제외하고 모든 조건과 항목에서 상관계수($R^2$) 0.79 이상에서 실험 결과를 재현하였다. 개발 모델은 연속흐름(plug flow)계로써 기체상-생물막의 일반화된 공정에 적용할 수 있는 것으로 평가되었으며 복잡하고 다양한 공정 실험에서 설계 인자 분석 및 효율 평가에 유용한 도구로 사용될 수 있다.

Keywords

References

  1. Deshusses, M. A., Hamer, G. and Dunn, I. J., "Behavior of biofilters for waste air biotreatment: 1. Dynamic model development," Environ. Sci. Technol., 29(4), 1048-1058(1995). https://doi.org/10.1021/es00004a027
  2. Miller, D. E. and Canter, L. W., "Control of aromatic waste air streams by soil bioreactors," Environ. Prog. Sustain. Energy, 10, 300-306(1991).
  3. Mallakin, A. and Ward O. P., "Degradation of BTEX compounds in liquid media and in peat biofilters," J. Ind. Microbiol, 16, 309-318(1996). https://doi.org/10.1007/BF01570040
  4. Oh, Y.-S., Choi, S.-C. and Kim, Y.-K., "Degradation of gaseous BTX by biofiltration with Phanerochaete chrysosporium," J. Microbiol., 36(1), 34-38(1998).
  5. Horn, H. and Lackner, S., "Modeling of biofilm systems: a review," Adv. Biochem. Eng. Biotechnol., 146, 53-76(2014).
  6. Kumar, T. P., Rahul, Kumar, M. A. and Chandrajit, B., "Biofiltration of volatile organic compounds (VOCs)-an overview," Res. J. Chem. Sci., 1(8), 83-92(2011).
  7. Hirai, M., Ohtake, M. and Shoda, M., "Removal kinetics of hydrogen sulfide, methanethiol and dimethylsulfide by peat biofilters," J. Ferment. Bioeng., 70, 334-339(1990). https://doi.org/10.1016/0922-338X(90)90145-M
  8. Shareefdeen, Z., Baltzis, B. C., Oh, Y.-S. and Bartha, R., "Biofiltration of methanol vapor," Biotechnol. Bioeng., 5, 512-524(1993).
  9. Deshusses, M. A., Hamer, G. and Dunn, I. J., "Behavior of biofilters for waste air biotreatment: 2. Experimental evaluation of a dynamic model," Environ. Sci. Technol., 29(4), 1059-1068(1995). https://doi.org/10.1021/es00004a028
  10. Devinny, J. S. and Ramesh, J., "A phenomenological review of biofilter models," Chem. Eng. J., 113(2-3), 187-196(2005). https://doi.org/10.1016/j.cej.2005.03.005
  11. Gerrard, A. M., Havranek, J., Novak, V., Halecky, M., Jones, K., Soccol, C. R. and Paca J., "Modelling the steady state and dynamic conditions of a biotrickling filter treating styrene and acetone in air," Braz. Arch. Biol. Technol., 53(5), 1225-1234(2010). https://doi.org/10.1590/S1516-89132010000500028
  12. Ranjbar, S. and Ghaemi, A., "Mathematical modeling for volatile organic compounds removal in a biofilter: Model validation and sensitivity analysis," Iran. J. Chem. Eng., 10(3), 76-87(2013).
  13. San-Valero, P., Penya-Roja, J. M., Álvarez-Hornos, F. J., Marzal, P. and Gabaldón, C., "Dynamic mathematical modelling of the removal of hydrophilic VOCs by biotrickling filters," Int. J. Environ. Res. Public Health, 12(1), 746-766 (2015). https://doi.org/10.3390/ijerph120100746