• 제목/요약/키워드: Operating Capacity

검색결과 1,197건 처리시간 0.033초

공항 유휴시설의 활용방안에 대한 평가 (Evaluating the Alternative Options for Redevelopment of Airport Idle Facilities)

  • 박용화
    • 대한교통학회지
    • /
    • 제21권3호
    • /
    • pp.37-46
    • /
    • 2003
  • 지난 수년간 아시아 주요공항들은 지속적으로 늘어나는 항공수요로 인해 혼잡과 지연현상이 가중된 상태에서 공항을 운영 해왔다. 이러한 문제를 해결하고자 우리나라를 비롯한 중국, 일본, 태국, 말레이시아, 인도네시아 등의 국가들은 기존 시설을 확장하거나 신공항을 계획·건설하게 되었다. 신공항을 건설할 경우, 기존공항에 대한 활용문제가 중요한 이슈로 나타나게 된다. 일부 공항들은 국내선 전용공항으로 기능자체를 축소하여 운영하는 경우와 공항과는 전혀 상관없는 타 용도로 완전히 변경하는 경우도 있었다. 타 용도로 완전하게 기능을 변경하거나 공항기능 자체가 축소되어 많은 유휴시설이 발생할 경우에는 이에 대한 체계적인 활용방안이 수립되어야만 한다. 본 논문에서는 공항의 유휴시설에 대한 효율적인 활용방안을 평가하는 방법론을 정립·적용코자 하였다. 평가의 대상공항으로 김포국제공항을 선정하였으며, 평가방법은 서로 다른 이해집단인 여객, 공항전문가, 지역사회주민들의 의견을 물어 이를 퍼지언어변수로 분석하는 방식을 채택하였다. 설문조사는 대상자를 직접 면담하는 방식을 취했으며, 설문조사 결과를 바탕으로 14개의 유치시설 및 기능으로 활용대안을 설정한 뒤, 이들을 수익성, 연계성, 사회성, 공간성, 공익성 등과 같은 기준에 따라 평가하였다. 평가결과에 따르면 전자게임랜드, 쇼핑몰·대형할인점, 비즈니스 사무공간, 먹거리 타운, 시네마 타운 등이 적합한 것으로 나타났다.

이산사건 시뮬레이션 시스템을 활용한 생산성 개선 사례 연구 (A Case Study on Productivity Improvement by a Discrete Event-Driven Simulation System)

  • 김상태;신문수;류광열;조용주
    • 산업경영시스템학회지
    • /
    • 제38권4호
    • /
    • pp.149-158
    • /
    • 2015
  • Up-to-date manufacturing companies have faced a market-driven environment of pull production order. There should be a difference in operating manufacturing resources according to the type, quantity, and delivery time of manufactured products, because the process situation in pull production is changed by customer orders. And it should be taken into account from the stage of preparing for production such as process design and the placement and utilization of manufacturing resources. However, the feasibility of production plans is limited because most of small manufacturing businesses make production/supply plan of the parts and products assuming that equipment abilities in scheduling is sufficient without managing process standard information systemically. In this study, a discrete event simulation system based on BOM (bill of material), that is F-OPIS (online productivity innovation system), is introduced and a case study on application of the system leading to improving productivities is presented. F-OPIS deals with a decision-problem on production management and it is specialized for small-and- medium sized manufacturing companies. The target company of this case study is a typical small-and-medium sized manufacturing company in Korea, that produces various machined parts. The target company adopts make-to-stock production management to prevent tardy delivery because of fluctuations in demand. Therefore, it is required to apply an efficient inventory control solution for improving productivities. In this paper, based on the constraints of working capacity of manufacturing resources, the bottleneck process is analyzed as production conditions are changed. Consequently, an improvement plan is proposed, that eventually enhances overall utilization rates of resources in the bottleneck process and reduces overall production lead-time and inventory level.

POWER UPRATES IN NUCLEAR POWER PLANTS: INTERNATIONAL EXPERIENCES AND APPROACHES FOR IMPLEMENTATION

  • Kang, Ki-Sig
    • Nuclear Engineering and Technology
    • /
    • 제40권4호
    • /
    • pp.255-268
    • /
    • 2008
  • The greater demand for electricity and the available capacity within safety margins in some operating NPPs are prompting nuclear utilities to request license modification to enable operation at a higher power level, beyond their original license provisions. Such plant modifications require an in-depth safety analysis to evaluate the possible safety impact. The analysis must consider the thermo hydraulic, radiological and structural aspects, and the plant behavior, while taking into account the capability of the structures, systems and components, and the reactor protection and safeguard systems set points. The purpose of this paper is to introduce international experiences and approaches for implementation of power uprates related to the reactor thermal power of nuclear power plants. The paper is intended to give the reader a general overview of the major processes, work products, issues, challenges, events, and experiences in the power uprates program. The process of increasing the licensed power level of a nuclear power plants is called a power uprate. One way of increasing the thermal output from a reactor is to increase the amount of fissile material in use. It is also possible to increase the core power by increasing the performance of the high power bundles. Safety margins can be maintained by either using fuels with a higher performance, or through the use of improved methods of analysis to demonstrate that the required margins are retained even at the higher power levels. The paper will review all types of power uprates, from small to large, and across various reactor types, including light and heavy water, pressurized, and boiling water reactors. Generally, however, the content of the report focuses on power uprates of the stretch and extended type. The International Atomic Energy Agency (IAEA) is developing a technical guideline on power uprates and side effects of power uprates in nuclear power plants.

Transverse cracking based numerical analysis and its effects on cross-ply laminates strength under thermo-mechanical degradation

  • Abdelatif, Berriah;Abdelkader, Megueni;Abdelkader, Lousdad
    • Structural Engineering and Mechanics
    • /
    • 제60권6호
    • /
    • pp.1063-1077
    • /
    • 2016
  • Components manufactured from composite materials are frequently subjected to superimposed mechanical and thermal loadings during their operating service. Both types of loadings may cause fracture and failure of composite structures. When composite cross-ply laminates of type [$0_m/90_n]_s$ are subjected to uni-axial tensile loading, different types of damage are set-up and developed such as matrix cracking: transverse and longitudinal cracks, delamination between disoriented layers and broken fibers. The development of these modes of damage can be detrimental for the stiffness of the laminates. From the experimental point of view, transverse cracking is known as the first mode of damage. In this regard, the objective of the present paper is to investigate the effect of transverse cracking in cross-ply laminate under thermo-mechanical degradation. A Finite Element (FE) simulation of damage evolution in composite crossply laminates of type [$0_m/90_n]_s$ subjected to uni-axial tensile loading is carried out. The effect of transverse cracking on the cross-ply laminate strength under thermo-mechanical degradation is investigated numerically. The results obtained by prediction of the numerical model developed in this investigation demonstrate the influence of the transverse cracking on the bearing capacity and resistance to damage as well as its effects on the variation of the mechanical properties such as Young's modulus, Poisson's ratio and coefficient of thermal expansion. The results obtained are in good agreement with those predicted by the Shear-lag analytical model as well as with the obtained experimental results available in the literature.

Prototype Development of a Small Combine for Harvesting Miscellaneous Cereal Crops and its Basic Performance

  • Lee, Beom Seob;Yoo, Soonam;Lee, Changhoon;Yun, Young Tae
    • Journal of Biosystems Engineering
    • /
    • 제43권4호
    • /
    • pp.311-319
    • /
    • 2018
  • Purpose: The aim of this study is to develop a small combine for harvesting miscellaneous cereal crops. Methods: A prototype small combine was designed and constructed. Its specifications and basic performance were investigated. Results: The prototype small combine for harvesting miscellaneous cereal crops was designed and constructed to reflect similar specifications as those of the conventional combine. The prototype small combine comprises a diesel engine with the rated power/speed of 22.0 kW/2,600 rpm, three-stage primary and two-stage speed range transmission shifts, and a double acting threshing part. The maximum travel speeds of the prototype combine are approximately 0.72 m/s, 2.50 m/s, 0.30 m/s at the low, high speed range shifts in the forward direction, and while traversing in the reverse direction, respectively. The minimum radius of turning was approximately 1.50 m. In a static lateral overturning test, the prototype combine overturned neither to the right nor to left on a $30^{\circ}$ slope. The results of an oilseed rape harvesting test included the maximum operating speed of 0.32 m/s, the grain loss ratio of approximately 9.0%, and the effective field capacity of approximately 10.3 a/h. Additionally, among the outputs in grain outlet, the whole grains, damage grains, and materials other than grain (MOG) ratios accounted for 97.4%, 0.0%, and 2.6%, respectively. Conclusions: The prototype small combine for harvesting miscellaneous cereal crops indicates good driving ability and stability. The results of the oilseed rape harvesting test reveal that the harvesting performance must be enhanced such that the separating and cleaning parts are more suitable for each type of crop, thus reducing grain loss and foreign substances among the outputs in grain outlet. An improved small prototype combine could be used effectively to mechanize the harvesting of miscellaneous cereal crops in small family farms or semi-mountainous areas.

베어링의 열전도율이 평행 슬라이더 베어링의 윤활성능에 미치는 영향 (Effect of Thermal Conductivity of Bearing on the Lubrication Performance of Parallel Slider Bearing)

  • 박태조;이원석;박지빈
    • Tribology and Lubricants
    • /
    • 제34권6호
    • /
    • pp.247-253
    • /
    • 2018
  • Temperature rise due to viscous shear of the lubricating oil generates hydrodynamic pressure, even if the lubricating surfaces are parallel. This effect, known as the thermal wedge effect, varies significantly with film-temperature boundary conditions. The bearing conducts a part of the heat generated; hence, the oil temperature varies with the thermal conductivity of the bearing. In this study, we analyze the effect of thermal conductivity on the thermohydrodynamic (THD) lubrication of parallel slider bearings. We numerically analyze the continuity equation, Navier-Stokes equation, energy equation including the temperature-viscosity and temperature-density relations for lubricants, and the heat conduction equation for bearing by creating a 2D model of the micro-bearing using the commercial computational fluid dynamics (CFD) code FLUENT. We then compare the variation in temperature, viscosity, and pressure distributions with the thermal conductivity. The results demonstrate that the thermal conductivity has a significant influence on THD lubrication characteristics of parallel slider bearings. The lower the thermal conductivity, the greater the pressure generation due to the thermal wedge effect resulting in a higher load-carrying capacity and smaller frictional force. The present results can function as the basic data for optimum bearing design; however, the applicability requires further studies on various operating conditions.

고공 환경 모사를 위한 병렬형 이젝터 구성에 따른 특성 연구 (A Numerical Analysis on Performance of Parallel Type Ejector for High Altitude Simulation)

  • 신동해;유이상;신민규;오정화;고영성;김선진
    • 한국추진공학회지
    • /
    • 제23권1호
    • /
    • pp.52-60
    • /
    • 2019
  • 본 연구에서는 수치해석을 활용하여 여러 개의 이젝터로 구성된 병렬형 이젝터의 성능과 구조에 대한 특성을 확인하였다. 병렬 이젝터의 설계는 단일 이젝터와 동일한 설계 변수(질량 흡입비, 압축비, 팽창비)를 사용하였다. 해석 결과에 의하면, 병렬형과 단일 이젝터의 작동 질량 흡입비의 비가 같을 경우에는 성능에 있어 큰 차이를 보이지 않았으나, 시스템의 크기가 작아지는 이점이 있음을 확인하였다. 또한, 동일 성능의 이젝터를 병렬로 배치하였을 때는 질량 흡입비가 단일 보다 감소하여 더 낮은 압력을 구현하는 것을 확인하였다. 해석 결과를 종합하면 병렬형 이젝터 성능은 단일 이젝터와 크게 다르지 않으나, 병렬형 이젝터 구성에 따라서는 크기와 작동에 이점이 있음을 확인하였다.

Atomic Layer Deposition의 두께 변화에 따른 NCM 양극에서의 고전압 리튬 이온 전지의 전기화학적 특성 평가 (Electrochemical Performance of High-Voltage Lithium-Ion Batteries with NCM Cathode Varying the Thickness of Coating Layer by Atomic Layer Deposition)

  • 임진솔;안진혁;김정민;성시준;조국영
    • 전기화학회지
    • /
    • 제22권2호
    • /
    • pp.60-68
    • /
    • 2019
  • 이차 전지의 고전압 구동은 기존 셀 구조의 변화 없이도 고용량을 구현할 수 있는 유용한 접근 방법 중에 하나이나, 전극 표면에서의 극심한 부반응과 전극 활물질의 구조 붕괴 등과 같은 문제를 야기하게 된다. 본 연구에서는 니켈-망간-코발트 삼성분계(NCM) 활물질을 도입한 양극의 고전압 구동을 위해 원자층 증착법 (Atomic Layer Deposition, ALD)을 통해 전극판 표면에 $Al_2O_3$와 ZnO층으로 구성된 코팅 층을 형성하였다. 기존 ALD법으로 제조되는 박막에 비해 유사한 조건에서도 두꺼운 Al-doped ZnO (AZO)층을 최초로 형성하였고, 코팅된 AZO층의 두께를 달리한 NCM 기반의 양극판을 제조하였다. ALD 코팅된 양극이 도입된 코인셀을 제조하여 두껍게 형성된 코팅 층의 두께에 따른 고전압에서 충방전 거동을 확인하였다.

Study on Influencing Factors of Port Logistics Development Based on Configuration Analysis QCA

  • Li, Jian;Lee, Sang-Chun;Hong, Seung-Lin
    • Journal of Korea Trade
    • /
    • 제25권5호
    • /
    • pp.58-73
    • /
    • 2021
  • Purpose - In the context of economic globalization and the continuous development of international trade, as countries around the sea peninsula, port construction is particularly important. Based on the research on the influencing factors of port logistics development based on the allocation analysis, QCA (Qualitative Comparative Analysis) provides the basis for the planning and policy of port logistics development and has important theoretical value and practical significance for improving the level of port logistics management, reducing logistics operating costs and increasing economic benefits. In the tide of global integration for the development of port logistics, promote the growth of foreign trade economy of the city. It is also of great significance to the development and progress of commerce and trade. Design/methodology - Based on the relevant data samples of various ports in South Korea, this paper uses fsQCA (fuzzy set Qualitative Comparative Analysis) to integrate and analyze the influence mechanism of port logistics development and extracts five influencing factors of port logistics development, including the port's scale and infrastructure in the hard environment, port-neighboring enterprises in the soft environment, hinterland economy and government support. Findings - The five factors are unable to separately constitute the necessary and sufficient conditions of port logistics development, only a combined model can influence lake port logistics development. The scale and infrastructure of the port itself and port-neighboring ring enterprises are the main core conditions, which work together on the port, affect the throughput capacity of the port, and promote the development of port logistics. When the port-neighboring enterprises are not complete and the scale is low, the growth of port throughput will be restrained and the development of port logistics will be affected, whether the hinterland economic benefits are general, the development of port-neighboring enterprises is insufficient, or the government supports are limited. Originality/value - Through the research on the development of port logistics in South Korea from the perspective of configuration, this paper finds the configuration influence of hard environment and soft environment on the development of port logistics, which has important theoretical and practical significance for better promoting the development of port logistics in South Korea.

Thermal stability, magnetic and magnetocaloric properties of Gd55Co35M10 (M = Si, Zr and Nb) melt-spun ribbons

  • Jiao, D.L.;Zhong, X.C.;Zhang, H.;Qiu, W.Q.;Liu, Z.W.;Ramanujan, R.V.
    • Current Applied Physics
    • /
    • 제18권12호
    • /
    • pp.1523-1527
    • /
    • 2018
  • The thermal stability, magnetic and magnetocaloric properties of $Gd_{55}Co_{35}M_{10}$ (M = Si, Zr and Nb) melts-pun ribbons were studied. The relatively high reduced glass transition temperature ($T_{x1}/T_m$ > 0.60) and low melting point ($T_m$) resulted in excellent glass forming ability (GFA). The Curie temperatures ($T_C$) of melt-spun amorphous ribbons $Gd_{55}Co_{35}M_{10}$ for M = Si, Zr and Nb were 166, 148 and 173 K, respectively. For a magnetic field change of 2 T, the values of maximum magnetic entropy change $(-{\Delta}S_M)^{max}$ for $Gd_{55}Co_{35}Si_{10}$, $Gd_{55}Co_{35}Zr_{10}$ and $Gd_{55}Co_{35}Nb_{10}$ were found to be 2.86, 4.28 and $4.05J\;kg^{-1}K^{-1}$, while the refrigeration capacity (RC) values were 154, 274 and $174J\;kg^{-1}$, respectively. The $RC_{FWHM}$ values of amorphous alloys $Gd_{55}Co_{35}M_{10}$ (M = Si, Zr and Nb) are comparable to or larger than that of $LaFe_{11.6}Si_{1.4}$ crystalline alloy. Large values of $(-{\Delta}S_M)^{max}$ and RC along with good thermal stability make $Gd_{55}Co_{35}M_{10}$ (M = Si, Zr and Nb) amorphous alloys be potential materials for magnetic cooling operating in a wide temperature range from 150 to 175 K, e.g., as part of a gas liquefaction process.