DOI QR코드

DOI QR Code

Thermal stability, magnetic and magnetocaloric properties of Gd55Co35M10 (M = Si, Zr and Nb) melt-spun ribbons

  • Jiao, D.L. (School of Materials Science and Engineering, South China University of Technology) ;
  • Zhong, X.C. (School of Materials Science and Engineering, South China University of Technology) ;
  • Zhang, H. (School of Materials Science and Engineering, South China University of Technology) ;
  • Qiu, W.Q. (School of Materials Science and Engineering, South China University of Technology) ;
  • Liu, Z.W. (School of Materials Science and Engineering, South China University of Technology) ;
  • Ramanujan, R.V. (School of Materials Science and Engineering, Nanyang Technological University)
  • Received : 2018.08.07
  • Accepted : 2018.09.18
  • Published : 2018.12.31

Abstract

The thermal stability, magnetic and magnetocaloric properties of $Gd_{55}Co_{35}M_{10}$ (M = Si, Zr and Nb) melts-pun ribbons were studied. The relatively high reduced glass transition temperature ($T_{x1}/T_m$ > 0.60) and low melting point ($T_m$) resulted in excellent glass forming ability (GFA). The Curie temperatures ($T_C$) of melt-spun amorphous ribbons $Gd_{55}Co_{35}M_{10}$ for M = Si, Zr and Nb were 166, 148 and 173 K, respectively. For a magnetic field change of 2 T, the values of maximum magnetic entropy change $(-{\Delta}S_M)^{max}$ for $Gd_{55}Co_{35}Si_{10}$, $Gd_{55}Co_{35}Zr_{10}$ and $Gd_{55}Co_{35}Nb_{10}$ were found to be 2.86, 4.28 and $4.05J\;kg^{-1}K^{-1}$, while the refrigeration capacity (RC) values were 154, 274 and $174J\;kg^{-1}$, respectively. The $RC_{FWHM}$ values of amorphous alloys $Gd_{55}Co_{35}M_{10}$ (M = Si, Zr and Nb) are comparable to or larger than that of $LaFe_{11.6}Si_{1.4}$ crystalline alloy. Large values of $(-{\Delta}S_M)^{max}$ and RC along with good thermal stability make $Gd_{55}Co_{35}M_{10}$ (M = Si, Zr and Nb) amorphous alloys be potential materials for magnetic cooling operating in a wide temperature range from 150 to 175 K, e.g., as part of a gas liquefaction process.

Keywords

Acknowledgement

Supported by : Natural Science Foundation of Guangdong Province, Central Universities, National Research Foundation, Nanyang Technological University

References

  1. A.M. Tishin, Y.I. Spichkin, The magnetocaloric effect and its applications, Institute of Physics Publishing, Bristol, 2003, p. 1.
  2. K.A. Gschneidner Jr., V.K. Pecharsky, A.O. Tsokol, Recent developments in magnetocaloric materials, Rep. Prog. Phys. 68 (2005) 1479. https://doi.org/10.1088/0034-4885/68/6/R04
  3. V. Franco, J.S. Blazquez, B. Ingale, A. Conde, The magnetocaloric effect and magnetic refrigeration near room temperature: materials and models, Annu. Rev. Mater. Res. 42 (2012) 305. https://doi.org/10.1146/annurev-matsci-062910-100356
  4. K.A. Gschneidner Jr., V.K. Pecharsky, Thirty years of near room temperature magnetic cooling: what we are today and future prospects, Int. J. Refrig. 31 (6) (2008) 945. https://doi.org/10.1016/j.ijrefrig.2008.01.004
  5. V. Franco, J.S. Blazquez, J.J. Ipus, J.Y. Law, L.M. Moreno-Ramirez, A. Conde, Magnetocaloric effect: from materials research to refrigeration devices, Prog. Mater. Sci. 93 (2018) 112. https://doi.org/10.1016/j.pmatsci.2017.10.005
  6. V.K. Pecharsky, K.A. Gschneidner Jr., Giant magnetocaloric effect in $Gd_5(Si_2Ge_2)$, Phys. Rev. Lett. 78 (1997) 4494. https://doi.org/10.1103/PhysRevLett.78.4494
  7. F.X. Hu, B.G. Shen, J.R. Sun, Z.H. Cheng, G.H. Rao, X.X. Zhang, Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound $LaFe_{11.4}Si_{1.6}$, Appl. Phys. Lett. 78 (23) (2001) 36757.
  8. H. Wada, Y. Tanabe, Giant magnetocaloric effect of $MnAs_{1-x}Sb_x$, Appl. Phys. Lett. 79 (20) (2001) 3302. https://doi.org/10.1063/1.1419048
  9. O. Tegus, E. Brück, K.H.J. Buschow, F.R. de Boer, Transition-metal-based magnetic refrigerants for room-temperature applications, Nature 415 (2002) 150. https://doi.org/10.1038/415150a
  10. S.E. Muthu, M. Kanagaraj, S. Singh, P.U. Sastry, G. Ravikumar, R.N.V. Rama, M.M. Raja, S. Arumugam, Hydrostatic pressure effects on martensitic transition, magnetic and magnetocaloric effect in Si doped Ni-Mn-Sn Heusler alloys, J. Alloy. Compd. 584 (3) (2014) 175. https://doi.org/10.1016/j.jallcom.2013.09.007
  11. C. Zimm, A. Boeder, J. Chell, A. Sternberg, A. Fujita, S. Fujieda, K. Fukamichi, Design and performance of a permanent-magnet rotary refrigerator, Int. J. Refrig. 29 (8) (2006) 1302. https://doi.org/10.1016/j.ijrefrig.2006.07.014
  12. X.C. Zhong, Z.W. Liu, D.C. Zeng, K.A. Gschneidner Jr., V.K. Pecharsky, Magnetocaloric effect of $Pr_2Fe_{17-x}Mn_x$ alloys, Rare Met. 33 (5) (2014) 552. https://doi.org/10.1007/s12598-013-0134-x
  13. X.C. Zhong, H.C. Tian, S.S. Wang, Z.W. Liu, Z.G. Zheng, D.C. Zeng, Thermal, magnetic and magnetocaloric properties of $Fe_{80-x}M_xB_{10}Zr_9Cu_1$ (M = Ni, Ta; x = 0, 3, 5) amorphous alloys, J. Alloy. Compd. 633 (2015) 188. https://doi.org/10.1016/j.jallcom.2015.02.037
  14. C. Mayer, S. Gorsse, G. Ballon, R. Caballero-Flores, V. Franco, B. Chevalier, Tunable magnetocaloric effect in Gd-based glassy ribbons, J. Appl. Phys. 110 (2011) 053920. https://doi.org/10.1063/1.3632983
  15. F. Yuan, Q. Li, B.L. Shen, The effect of Fe/Al ratio on the thermal stability and magnetocaloric effect of $Gd_{55}Fe_xAl_{45-x}$ (x = 15-35) glassy ribbons, J. Appl. Phys. 111 (2012) 07A937. https://doi.org/10.1063/1.3677780
  16. X.C. Zhong, P.F. Tang, B.B. Gao, J.X. Min, Z.W. Liu, Z.G. Zheng, D.C. Zeng, H.Y. Yu, W.Q. Qiu, Magnetic properties and magnetocaloric effects in amorphous and crystalline $Gd_{55}Co_{35}Ni_{10}$ ribbons, Sci. China Phys. Mech. Astron. 56 (6) (2013) 1096. https://doi.org/10.1007/s11433-013-5082-9
  17. X.C. Zhong, X.W. Huang, X.Y. Shen, H.Y. Mo, Z.W. Liu, Thermal stability, magnetic properties and large refrigerant capacity of ternary $Gd_{55}Co_{35}M_{10}$ (M=Mn, Fe and Ni) amorphous alloys, J. Alloy. Compd. 633 (2016) 188.
  18. Q.Y. Dong, B.G. Shen, J. Chen, J. Shen, F. Wang, H.W. Zhang, J.R. Sun, Large magnetic refrigerant capacity in $Gd_{71}Fe_3Al_{26}$ and $Gd_{65}Fe_{20}Al_{15}$ amorphous alloys, J. Appl. Phys. 105 (2009) 053908. https://doi.org/10.1063/1.3072631
  19. C. Mayer, B. Chevalier, S. Gorsse, Magnetic and magnetocaloric properties of the ternary Gd-based metallic glasses $Gd_{60}Mn_{30}X_{10}$, with X= Al, Ga, J. Alloys. Compd. 507 (2010) 370. https://doi.org/10.1016/j.jallcom.2010.07.210
  20. B. Schwarz, B. Podmilsak, N. Mattern, J. Eckert, Magnetocaloric effect in Gd-based $Gd_{60}Fe_xCo_{30-x}Al_{10}$ metallic glasses, J. Magn. Magn Mater. 322 (16) (2010) 2298. https://doi.org/10.1016/j.jmmm.2010.02.029
  21. D.W. Xing, H.X. Shen, J.S. Liu, H. Wang, F.Y. Cao, F.X. Qin, D.M. Chen, Y.F. Liu, J.F. Sun, Magnetocaloric effect in uncoated $Gd_{55}Al_{20}Co_{25}$ amorphous wires, Mater. Res. 18 (S1) (2015) 49. https://doi.org/10.1590/1516-1439.325414
  22. D. Chen, A. Takeuchi, A. Inoue, Gd-Co-Al and Gd-Ni-Al bulk metallic glasses with high glass forming ability and good mechanical properties, J. Alloy. Compd. 440 (2007) 199. https://doi.org/10.1016/j.jallcom.2006.09.064
  23. B.K. Banerjee, On a generalised approach to first and second order magnetic transitions, Phys. Lett. 12 (1964) 16.
  24. C.L. Jo, L. Xia, D. Ding, Y.D. Dong, G. Ekoko, Glass formation ability, structure and magnetocaloric effect of a heavy rare-earth bulk metallic glassy $Gd_{55}Co_{20}Fe_5Al_{20}$ alloy, J. Alloy. Compd. 458 (2008) 18. https://doi.org/10.1016/j.jallcom.2007.03.119
  25. Y.K. Fang, C.H. Lai, C.C. Hsieh, X.G. Zhao, H.W. Chang, W.C. Chang, W. Li, Thermal stability and magnetocaloric effect of the $Gd_{65}Fe_{20}Al_{15-x}B_x$ glassy ribbons, J. Appl. Phys. 107 (2010) 09A901. https://doi.org/10.1063/1.3335498
  26. J.Y. Law, R.V. Ramanujan, V. Franco, Influence of La and Ce additions on the magnetocaloric effect of Fe-B-Cr-based amorphous alloys, Appl. Phys. Lett. 98 (2011) 192503. https://doi.org/10.1063/1.3589353
  27. X.Y. Liu, J.A. Barclay, R.B. Gopal, M. Foldeaki, R. Chahine, T.K. Bose, P.J. Schurer, J.L. LaCombe, Thermomagnetic properties of amorphous rare‐earth alloys with Fe, Ni, or Co, J. Appl. Phys. 79 (1996) 1630. https://doi.org/10.1063/1.361007
  28. A. Fujita, K. Fukamichi, Control of large magnetocaloric effects in metamagnetic $La(Fe_xSi_{1-x})_{13}$ compounds by hydrogenation, J. Alloy. Compd. 404-406 (2005) 554. https://doi.org/10.1016/j.jallcom.2004.11.106
  29. X. Chen, Y.G. Chen, D.Q. Xiao, Y.B. Tang, Phase, microstructure, and magnetocaloric effect of the large disc $LaFe_{11.6}Si_{1.4}$ alloy, J. Rare Earths 33 (2) (2015) 182. https://doi.org/10.1016/S1002-0721(14)60400-2
  30. X.C. Zhong, P.F. Tang, Z.W. Liu, D.C. Zeng, Z.G. Zheng, H.Y. Yu, W.Q. Qiu, H. Zhang, R.V. Ramanujan, Large magnetocaloric effect and refrigerant capacity in Gd-Co-Ni metallic glasses, J. Appl. Phys. 111 (2012) 07A919. https://doi.org/10.1063/1.3673422
  31. H.C. Tian, X.C. Zhong, Z.W. Liu, Z.G. Zheng, J.X. Min, Achieving table-like magnetocaloric effect and large refrigerant capacity around room temperature in $Fe_{78-x}Ce_xSi_4Nb_5B_{12}Cu_1$ (x=0-10) composite materials, Mater. Lett. 138 (2015) 64. https://doi.org/10.1016/j.matlet.2014.09.127
  32. Xenon". Columbia Electronic Encyclopedia (sixth ed.). Columbia University Press. Retrieved 2007-10-23.

Cited by

  1. Effects of interstitial carbon atoms on texture structure and mechanical properties of FeMnCoCr alloys vol.15, pp.12, 2018, https://doi.org/10.1371/journal.pone.0242322