In this paper, we present a case study of developing MVIS (Machine Vision Inspection System) designed for exterior quality inspection of stamping dies used in the production of automotive exterior components in a small to medium-sized factory. While the primary processes within the factory, including machining, transportation, and loading, have been automated using PLCs, CNC machines, and robots, the final quality inspection process still relies on manual labor. We implement the MVIS with general-purpose industrial cameras and Python-based open-source libraries and frameworks for rapid and low-cost development. The MVIS can play a major role on improving throughput and lead time of stamping dies. Furthermore, the processed inspection images can be leveraged for future process monitoring and improvement by applying deep learning techniques.
본 논문에서는 대표적인 특징점 추출 알고리즘인 SIFT(Scale-Invariant Feature Transform)를 매니코어 프로세서를 이용하여 병렬 구현하고, 이를 실행 시간, 시스템 이용률, 에너지 효율 및 시스템 면적 효율 측면에서 분석하였다. 또한 기존의 고성능 CPU와 GPU(Graphics Processing Unit)와의 성능 비교를 통해 제안하는 매니코어의 잠재가능성을 입증하였다. 모의실험 결과, 매니코어를 이용한 SIFT 알고리즘 구현 결과는 기존의 OpenCV 구현 결과와 정확도면에서 동일하였고, 매니코어 구현은 고성능 CPU 및 GPU 구현보다 실행시간 측면에서 우수하였다. 또한 본 논문에서는 SIFT알고리즘의 옥타브 크기에 따른 에너지 효율 및 시스템 면적 효율을 분석하여 최적의 모델을 제시하였다.
디지털 영상 처리 분야에서 사람의 동작 인식은 다양하게 연구되고 있으며, 최근에는 깊이 영상을 이용한 방법이 매우 유용하게 사용되고 있다. 하지만 깊이 측정 센서의 위치와 각도에 따라 깊이 영상에서의 객체 크기나 형태가 왜곡되므로 사물 및 사람의 인식 과정에서 인식률이 감소하는 경우가 발생한다. 따라서 뛰어난 성능을 보장하기 위해서는 측정 센서에 의한 왜곡 보정은 반드시 고려되어야 할 사항이다. 본 논문에서는 동작 인식 시스템의 인식률을 향상시키기 위한 전처리 알고리즘을 제안한다. 깊이 측정 센서로부터 입력되는 깊이 정보를 실제 공간 (Real World)으로 변환하여 왜곡 보정을 수행한 후 투영 공간 (Projective World)으로 변환한다. 최종적으로 제안된 시스템을 OpenCV와 Window 프로그램을 사용하여 구현하였으며 Kinect를 사용하여 실시간으로 성능을 테스트하였다. 또한, Verilog-HDL을 사용하여 하드웨어 시스템을 설계하고, Xilinx Zynq-7000 FPGA Board에 탑재하여 검증하였다.
영상 이미지 감성으로 행복 또는 불행, 긴장 또는 평온의 구분 감성을 트리형식으로 가중치를 부여하여 평가한다. 영상 이미지 대표평가 감성인 명도대비를 평가 기준으로 1차는 행복, 불행 또는 긴장, 평온이고 2차는 종속성을 지닌 세분화된 영상 이미지 감성으로 구분한다. 4개의 감성인식을 수치화 된 명도대비 데이터로 측정한다. 평가 구현은 OpenCV를 통해 명도대비를 그래프화하여 긴장, 평온, 행복, 불행 값의 변화에 따라 4개 감성으로 구분하여 컴퓨팅한다. 감성 컴퓨팅은 명도대비의 입력 값에 따라 '불행'을 '행복'으로 또는 '긴장'을 '평온'으로 감성적인 변화를 구현한다. 감성 컴퓨팅은 영상 감성의 규칙성을 계산화 된 컴퓨팅 시스템으로 제어할 수 있고 명도대비 값에 따라 감성의 변화를 구현한다. 향후 산업방향에 감성 인식의 적용에 대한 긍정적인 역할을 할 것이다.
사람의 손길이 닿지 않는 곳에 위험 상황이 발생하였다면 무인 비행체를 활용하여 그 상황의 규모와 위치를 파악하여 더 큰 피해를 줄일 수 있다. 이러한 점에서 착안하여 본 논문에서는 무인 비헹체가 원활한 호버링을 수행할 수 있도록 Beta Flight를 사용하여 Roll, Pitch, Yaw의 최솟값과 최댓값을 설정한 후 센서의 작동을 감지하여 기체의 기울기의 변화에 따라 센서의 PID 값을 설정하여 수평이 유지될 수 있도록 오차를 최소화하여 안전한 호버링을 할 수 있도록 하였다. 또한, 카메라는 Open CV를 활용하여 라즈베리파이 프로그램을 설치한 후 HSV 색상표를 활용하여 화원과 가장 가까운 색인 붉은색을 제외한 나머지 부분을 흑백 처리하는 필터링을 씌워 공중에서 감지한 영상을 실시간으로 수신할 수 있도록 하였다. 최종적으로 0.5~5m 높이에서 호버링이 가능하였으며 5m 높이에서 반지름이 5cm 인 붉은색 원을 인식할 수 있음을 확인하였다.
악보는 성공적인 곡 해석, 연주, 공연 등을 위해 필수적인 요소로 인식되고 있으며, 대부분의 연주자들은 이러한 상황에서 일반적으로 종이악보를 활용하고 있다. 그러나 종이악보는 페이지를 넘겨야 할 때 연주자 및 청중의 집중도를 떨어뜨리는 원인 중 하나가 될 뿐 아니라, 전체적인 연주의 흐름을 저해하는 요소로 작용하기도 한다. 또한 이러한 종이악보의 단점들은 공연장소 주변의 날씨나 환경 등으로 인해 더더욱 부각될 수밖에 없다. 본 논문에서는 이러한 종이악보의 단점들을 해결하기 위한 태블릿 PC기반의 전자악보 페이지 터너 애플리케이션을 제안한다. 제안하는 페이지 터너 애플리케이션은 원활한 연주 진행을 위해 연주자의 시선 또는 동작을 판독하여 전자악보를 다음페이지로 넘길 수 있도록 구현되어 있으며, 시선추적 및 동작 판독 알고리즘은 OpenCV를 통해 구현하였다. 제안하는 페이지 터너 애플리케이션을 통해 기존 종이악보가 갖고 있는 문제점을 상당부분 개선할 수 있을 것으로 기대한다.
지능형 교통 시스템(ITS) 및 지능형 자동차의 운전자 보조 시스템에서 차선의 경계를 검출하기 위한 허프 변환 방법이 많이 연구되고 있다. 이 방법의 경우 차선을 효과적으로 인식하지만 차선 이외의 영역의 직선들도 인식할 수 있기 때문에 인식률이 떨어질 수 있고 연산속도가 늦어진다. 본 논문에서는 이러한 문제를 해결하기 위해 Hough space에 Accumulator cells를 최적화한 방법을 이용해서 차선 경계를 인식하는 알고리즘을 제안하였다. 이를 바탕으로 H/W 검증을 통해 안드로이드용 어플리케이션을 개발하였다. 스마트 기기의 사용자라면 언제 어디서든 운전자의 주행안전을 위한 차선검출 및 차선이탈 경보시스템을 사용 할 수 있도록 하였다. 소프트웨어 검증은 OpenCV를 사용하여 93.1%의 높은 차선인식률을 보였으며, 하드웨어 실시간 검증은 안드로이드용 휴대폰을 사용하여 68.89%의 차선인식률을 보였다.
운전자 보조 시스템에서 도로 상태 정보는 안전한 운전을 위한 중요한 정보를 제공한다. 자동차에서의 입력 영상은 일반적으로 불필요한 영역도 포함하므로 도로 상태를 파악을 위한 관심영역(ROI)을 결정하고 나머지 영역을 제거한 뒤 관심영역만 남겨 두면 연산 시간을 줄일 수 있다. 본 논문에서는 도로를 나타내는 특징적인 선분과 이로부터 얻어지는 소멸점을 이용하여 도로 영역을 찾는 영상기반의 도로 관심영역 결정 알고리즘을 제안한다. 선분들은 Canny 가장자리 탐지법과 허프 변환을 이용하여 찾고 소멸점은 칼만 필터를 이용하여 추적함으로써 잡음의 영향에 의한 오동작을 방지한다. 초기화 과정을 거치면 도로 관심영역을 매 프레임마다 정확히 결정할 수 있다. 제안한 방식은 C++와 OpenCV 라이브러리를 이용하여 SW로 구현하였으며 다양한 블랙박스 영상으로부터 도로 관심영역을 얻는데 성공하였다. 실험 결과 제안한 알고리즘은 잡음에 강하다는 것을 확인하였다.
Nowadays object tracking process becoming one of the most challenging task in Computer Vision filed. A CSR-DCF (channel spatial reliability-discriminative correlation filter) tracking algorithm have been proposed on recent tracking benchmark that could achieve stat-of-the-art performance where channel spatial reliability concepts to DCF tracking and provide a novel learning algorithm for its efficient and seamless integration in the filter update and the tracking process with only two simple standard features, HoGs and Color names. However, there are some cases where this method cannot track properly, like overlapping, occlusions, motion blur, changing appearance, environmental variations and so on. To overcome that kind of complications a new modified version of CSR-DCF algorithm has been proposed by integrating deep learning based object detection and CSRT tracker which implemented in OpenCV library. As an object detection model, according to the comparable result of object detection methods and by reason of high efficiency and celerity of Faster RCNN (Region-based Convolutional Neural Network) has been used, and combined with CSRT tracker, which demonstrated outstanding real-time detection and tracking performance. The results indicate that the trained object detection model integration with tracking algorithm gives better outcomes rather than using tracking algorithm or filter itself.
본 논문에서는 기존의 터치 센서방법과 초음파나 레이저를 사용하는 방법이 아닌 디스플레이에 프린트된 매트릭스 패턴 영상을 이용하여 위치 정보를 추출하는 시스템의 패턴 영상의 특징점을 찾고 관심 영역의 영상을 추출하는 방법을 제안하였다. 제안하는 방법은 패턴 영상의 조도값과 패턴의 특징을 이용하여 촬영된 영상의 회전된 각도와 신뢰성 있는 특징점을 찾고 관심영역을 추출한다. 성공적인 관심 영역 추출을 위해서 다양한 각도에서 판서된 패턴영상을 이용하여 위치 관심영역 추출을 테스트하였고 성공적으로 관심영역을 추출하는 것을 확인하였다. 제안한 알고리즘은 OpenCV와 Window 프로그램을 사용하여 소프트웨어적으로 검증하고, 또한, Verilog-HDL을 사용하여 하드웨어 시스템을 설계하고, Xilinx FPGA(xc6vlx760) 보드를 이용하여 검증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.