• Title/Summary/Keyword: Open circuit fault

Search Result 74, Processing Time 0.045 seconds

An Open Circuit Fault Diagnostic Technique in IGBTs for AC to DC Converters Applied in Microgrid Applications

  • Khomfoi, Surin;Sae-Kok, Warachart;Ngamroo, Issarachai
    • Journal of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.801-810
    • /
    • 2011
  • An open circuit fault diagnostic method in IGBTs for the ac to dc converters used in microgrid applications is developed in this paper. An ac to dc converter is a key technology for microgrids in order to interface both distributed generation (DG) and renewable energy resources (RES). Also, highly reliable ac to dc converters are necessary to keep converters in continuous operation as long as possible during power switch fault conditions. Therefore, the proposed fault diagnostic method is developed to reduce the fault detection time and to avoid any other fault alarms because continuous operation is desired. The proposed diagnostic method is a combination of the absolute normalized dc current technique and the false alarm suppression algorithm to overcome the long fault detection time and fault alarm problems. The simulation and experimental results show that the developed fault diagnostic method can perform fault detection within about one cycle. The results illustrate that the reliability of an ac to dc converter interfaced with a microgrid can be improved by using the proposed fault diagnostic method.

Low-Cost Fault Diagnosis Algorithm for Switch Open-Damage in BLDC Motor Drives

  • Park, Byoung-Gun;Lee, Kui-Jun;Kim, Rae-Young;Hyun, Dong-Seok
    • Journal of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.702-708
    • /
    • 2010
  • In this paper, a fault diagnosis algorithm for brushless DC (BLDC) motor drives is proposed to maintain control performance under switch open-damage. The proposed fault diagnosis algorithm consists of a simple algorithm using measured phase current information and it detects open-circuit faults based on the operating characteristic of BLDC motors. The proposed algorithm quickly recovers control performance due to its short detection time and its reconfiguration of the system topology. It can be embedded into existing BLDC drive software as a subroutine without additional sensors. The feasibility of the proposed fault diagnosis algorithm is proven by simulation and experimental results.

Open Circuit Fault Diagnosis Using Stator Resistance Variation for Permanent Magnet Synchronous Motor Drives

  • Park, Byoung-Gun;Kim, Rae-Young;Hyun, Dong-Seok
    • Journal of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.985-990
    • /
    • 2013
  • This paper proposes a novel fault diagnosis scheme using parameter estimation of the stator resistance, especially in the case of the open-phase faults of PMSM drives. The stator resistance of PMSMs can be estimated by the recursive least square (RLS) algorithm in real time. Fault diagnosis is achieved by analyzing the estimated stator resistance of each phase according to the fault condition. The proposed fault diagnosis scheme is implemented without any extra devices. Moreover, the estimated parameter information can be used to improve the control performance. The feasibility of the proposed fault diagnosis scheme is verified by simulation and experimental results.

Analysis of Transient Characteristics of a SFCL Applied Into Third-winding Transformer in a Single Line-to-ground Fault (1선 지락 사고 시 3 권선 변압기에 적용된 초전도 한류기의 동작 특성 분석)

  • Choi, Hye-Won;Choi, Hyo-Sang;Jung, Byung-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.7
    • /
    • pp.1033-1037
    • /
    • 2013
  • Coercion transformer is commonly used in the electrical grid which in three phase of distribution system. The accident of the electrical grid is divided into a single, a double, a third line-to-ground faults and a double, a third line-to-line faults. A single line-to-ground fault accounts for nearly 75[%] among them. In this research, when a Superconducting Fault Current Limiters (SFCL) was applied to the three phase power system, operation in a single line-to-ground fault and limiting characteristics of fault current according to turns ratio of third winding were analyzed. When a single line-to-ground fault happened, secondary winding's circuit was open. Then third winding's circuit with a SFCL was closed. So fault current was limited by diverted circuit. At this time, we could find out that size of the limited fault current could be changed according to third winding rate. We confirmed that limiting operation of the fault current was carried out within one-period. These results will be utilized in adjusting the size of the SFCL.

Fault Diagnosis for Induction Motor Drive System (유도 전동기 구동 시스템의 고장진단)

  • Kim, Ho-Geun;Sul, Seung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.154-156
    • /
    • 1993
  • In this paper, fault analysis using simulation method and fault diagnosis scheme are presented for induction motor drive system. Major faults such as inverter 'a' phase open fault, inverter 'a'-'b' phase short circuit fault and inverter 'a' phase ground fault are analyzed and simulated. On-line and off-line fault diagnosis systems are proposed.

  • PDF

Test Method of an Embedded CMOS OP-AMP (내장된 CMOS 연산증폭기의 테스트 방법)

  • 김강철;송근호;한석붕
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.1
    • /
    • pp.100-105
    • /
    • 2003
  • In this paper, we propose the novel test method effectively to detect short and open faults in CMOS op-amp. The proposed method uses a sinusoidal signal with higher frequency than unit gain bandwidth. Since the proposed test method doesn't need complex algorithm to generate test pattern, the time of test pattern generation is short, and test cost is reduced because a single test pattern is able to detect all target faults. To verify the proposed method, CMOS two-stage operational amplifier with short and open faults is designed and the simulation results of HSPICE for the circuit have shown that the proposed test method can detect short and open faults in CMOS op-amp.

IGBT Open-Circuit Fault Diagnosis for 3-Phase 4-Wire 3-Level Active Power Filters based on Voltage Error Correlation

  • Wang, Ke;Tang, Yi;Zhang, Xiao;Wang, Yang;Zhang, Chuan-Jin;Zhang, Hui
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1950-1963
    • /
    • 2016
  • A novel open-circuit fault diagnosis method for 3-phase 4-wire 3-level active power filters based on voltage error correlation is proposed in this paper. This method is based on observing the output pole voltage error of the active power filter through two kinds of algorithms. One algorithm is a voltage error analytical algorithm, which derives four output voltage error analytic expressions through the pulse state, current value and dc bus voltage, respectively, assuming that all of the IGBTs of a certain phase come to an OC fault. The other algorithm is a current circuit equation algorithm, which calculates the real-time output voltage error through basic circuit theory. A correlation is introduced to measure the similarity of the output voltage errors between the two algorithms, and OC faults are located by the maximum of the correlations. A FPGA has been chosen to implement the proposed method due to its fast prototyping. Simulation and experimental results are presented to show the performance of the proposed OC fault diagnosis method.

Analysis of Transmission Power System with Superconducting Fault Current Limiter for Reducing a Fault Current (초전도 한류기 적용을 통한 모의 송전계통의 고장 전류 저감 분석)

  • Kim, Myong-Hyon;Kim, Jin-Seok;Lim, Sung-Hun;Kim, Jae-Chul;Choo, Dong-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.718-719
    • /
    • 2011
  • Lately, the demand for electrical power has been significantly increased. As a result a power transmission system has been improved. On the other hand fault current increased more than past. Superconducting fault current limiter (SFCL) is one of the solutions to limit fault current. However, SFCL's research has not advanced in a power transmission system fully. Therefore, we studied effect of SFCL in a power transmission system. The power distribution system is open-loop circuit, but a power transmission system is closed-loop system. Consequently, Fault current in a power transmission system is larger than fault current in a power distribution system. we exerimented a simple closed-loop power transmission system circuit.

  • PDF

Faults Analysis and Dynamic Simulation Method for Interior PM Synchronous Motor (매입형 영구자석 동기전동기의 고장해석 및 시뮬레이션방법)

  • Sun, Tao;Lee, Suk-Hee;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.874-875
    • /
    • 2007
  • This paper introduces major potential faults of IPMSM and their simulation realization methods. The faults of IPMSM, generally, contain single-phase open circuit, single-phase or 3-phase short circuit, and uncontrolled generation. When different fault occurs, the circuit of total system including motor and inverter also will be changed. Therefore, it is necessary to analyze and establish independent model for each kind of fault. In this paper, first, the drive circuit is analyzed as different fault type. Then, the corresponding simulation results solved in Simulink@MATLAB are given. The absence of experiment results leads that the veracity of simulation results can not be verified, but the tendency will be explained by theory analysis.

  • PDF

A Study on Development of Open-Phase Protector Having Leakage Current Generation and Incapable Operation Prevention at Open-Phase Accident (결상 시 누전전류 발생과 오동작 방지 기능을 갖는 결상보호기 개발에 관한 연구)

  • Kwak, Dong-Kurl
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.182-187
    • /
    • 2015
  • In the three-phase power system, when any one-phase or two-phases is open-phase, the unbalanced current flows and the single-phase power supplies to three-phase loads. Specially, motor coil and transformer coil receive over-current. As a result, great damage as well as electrical fire can occur to the power system. In order to improve these problems, this paper proposes that an open-phase detection device is designed by a new algorithm using electric potential difference between the resultant voltage of neutral point and ground, and a control circuit topology of open-phase protector is composed of highly efficient semiconductor devices. It improves response speed and reliability. The control algorithm circuit also operates the cut-off of a conventional residual current protective device (RCD) which flows an enforced leakage current to ground wire at open-phase accident. Furthermore, time delay circuit is added to prevent the incapable operation of open-phase protector about instantaneous open-phase not open-phase fault. The time delay circuit improves more reliability.