• Title/Summary/Keyword: One Equation Method

Search Result 1,552, Processing Time 0.036 seconds

Structural Topology Optimization using Element Remove Method (요소제거법을 이용한 구조물 위상최적설계)

  • 임오강;이진식;김창식
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.183-190
    • /
    • 2001
  • Topology optimization. has been evolved into a very efficient conceptual design tool and has been utilized into design engineering processes in many industrial parts. In recent years, topology optimization has become the focus of structural optimization design and has been researched and widely applied both in academy and industry. Traditional topology optimization has been using homogenization method and optimality criteria method. Homogenization method provides relationship equation between structure which includes many holes and stiffness matrix in FEM. Optimality criteria method is used to update design variables while maintaining that volume fraction is uniform. Traditional topology optimization has advantage of good convergence but has disadvantage of too much convergency time and additive checkerboard prevention algorithm is needed. In one way to solve this problem, element remove method is presented. Then, it is applied to many examples. From the results, it is verified that the time of convergence is very improved and optimal designed results is obtained very similar to the results of traditional topology using 8 nodes per element.

  • PDF

Analysis of the Cylindrical Metamaterial Slab Using the Higher Order-mode Finite Difference Time Domain Method (고차모드 시간영역 유한차분법을 이용한 원통형 메타물질 Slab의 해석)

  • Hong, Ic-Pyo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.1
    • /
    • pp.38-44
    • /
    • 2010
  • In this paper, the higher order FDTD(Finite-Difference Time-Domain) method is used to obtain the frequency response characteristics of the cylindrical metamaterial slab. FDTD method is one of strongest electromagnetic numerical method which is widely used to analyze the metamaterial structure because of its simplicity and the dispersive FDTD equation which has the dispersive effective dielectric constant and permeability are derived to analyze the metamaterials. This derived dispersive FDTD equation has no errors in analyzing the dielectric materials but there are some time and frequency errors in case of analyzing the metamaterials. We used the higher order FDTD method to obtain the accurate frequency response of the metamaterials. Comparisons between the dispersive FDTD method and the higher order FDTD method are performed in this paper also. From the results, we concluded that more accurate frequency response for various metamaterials applications can be obtained using the proposed method in this paper.

SHAPING A NOZZLE WITH A CENTRAL BODY (스파이크 노즐 설계)

  • KIM C. W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.293-298
    • /
    • 2005
  • We calculate the coordinates of an axisymmetric nozzle with a central body. This nozzle ensures a transonic flow with a plane sound surface, which is orthogonal to the symmetry axis and has a wall kink at the sonic point, The Chaplygin transformation in the subsonic part of the flow leads the Dirichlet problem for a system of nonlinear equations. The definition domain of the solution in the velocity-hodograph plane is taken as a rectangle. This enables one to obtain the nozzle with a monotonic distribution of velocity along its subsonic part. In the nonlinear differential equation, the linear Chaplygin operator for plane flows is separated, which allows the iterative calculation of the solution. The supersonic part of the nozzle is calculated under the assumption that the flow at the nozzle exit is uniform and parallel to the symmetry axis; i.e., the supersonic jet outflows to the submerged space with the same pressure. The calculation is performed by the characteristic method. The exact solution of Tricomi equation for near-sonic flows with the straight sonic line is used to 'move away' the sound plane. The velocity distribution alone the supersonic part of the nozzle is also monotonic, which ensures the absence of the boundary-layer separation and, therefore, the adequacy of the ideal-gas model. calculations show that the flow in the supersonic part of the nozzle is continuous (compression shocks are absent)

  • PDF

Incompressible/Compressible Flow Analysis over High-Lift Airfoil Using Two-Equation Turbulence Models (2-방정식 난류모델을 이용한 고양력 익형 주위의 비압축성/압축성 유동장 해석)

  • Kim Chang-Seong;Kim Jong-Am;No O Hyeon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.90-95
    • /
    • 1998
  • The two-dimensional incompressible and compressible Navier-Stokes codes are developed for the computation of the viscous turbulent flow over high-lift airfoils. Incompressible code using pseudo-compressibility and dual-time stepping method involves a conventional upwind differencing scheme for the convective terms and LU-SGS scheme for time integration. Compressible code also adopts an FDS scheme and LU-SGS scheme. Several two-equation turbulence models (the standard $k-{\varepsilon}$ model, the $k-{\omega}$ model. and $k-{\omega}$ SST model) are evaluated by computing the flow over single and multi-element airfoils. The compressible and incompressible codes are validated by computing the flow around the transonic RAE2822 airfoil and the NACA4412 airfoil, respectively. Both the results show a good agreement with experimental surface pressure coefficients and velocity profiles in the boundary layers. Also, the GA(W)-1 single airfoil and the NLR7301 airfoil with a flap are computed using the two-equation turbulence models. The grid systems around two- and three-element airfoil are efficiently generated using Chimera grid scheme, one of the overlapping grid generation methods.

  • PDF

Development of the intermittency turbulence model for a plane jet flow (자유 평면 제트유동 해석을 위한 간혈도 난류모델의 개발)

  • 조지룡;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.3
    • /
    • pp.528-536
    • /
    • 1987
  • In a turbulent free shear flow, the large scale motion is characterized by the intermittent flow which arises from the interaction between the turbulent fluid and the irrotational fluid of the environment through the mean velocity gradient. This large scale motion causes a bulk convection whose effect is similar to the spatial diffusion process. In this paper, the total diffusion process is proposed to be approximated by weighted sum of the bulk convection due to the large scale motion and the usual gradient diffusion due to small scale motion. The diffusion term in conventional .kappa.-.epsilon. model requires on more equation of the intermittency transport equation. A production term of this equation means mass entrainment from the irrotational fluid to the turbulent one. In order to test the validity of the proposed model, a plane jet is predicted by this method. Numerical results of this model is found to yield better agreement with experiment than the standard .kappa.-.epsilon. model and Byggstoyl & Kollmann's model(1986). Present hybrid diffusion model requires further tests for the check of universality of model and for the model constant fix.

Buckling of axially graded columns with varying power-law gradients

  • Li, X.F.;Lu, L.;Hu, Z.L.;Huang, Y.;Xiao, B.J.
    • Steel and Composite Structures
    • /
    • v.45 no.4
    • /
    • pp.547-554
    • /
    • 2022
  • This paper studies the static stability of an axially graded column with the power-law gradient varying along the axial direction. For a nonhomogeneous column with one end linked to a rotational spring and loaded by a compressive force, respectively, an Euler problem is analyzed by solving a boundary value problem of an ordinary differential equation with varying coefficients. Buckling loads through the characteristic equation with the aid of the Bessel functions are exactly given. An alternative way to approximately determine buckling loads through the integral equation method is also presented. By comparing approximate buckling loads with the exact ones, the approximate solution is simple in form and enough accurate for varying power-law gradients. The influences of the gradient index and the rotational spring stiffness on the critical forces are elucidated. The critical force and mode shapes at buckling are presented in graph. The critical force given here may be used as a benchmark to check the accuracy and effectiveness of numerical solutions. The approximate solution provides a feasible approach to calculating the buckling loads and to assessing the loss of stability of columns in engineering.

Comparing Two Approaches of Analyzing Mixed Finite Volume Methods

  • Chou, So-Hsiang;Tang, Shengrong
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.5 no.1
    • /
    • pp.55-78
    • /
    • 2001
  • Given the anisotropic Poisson equation $-{\nabla}{\cdot}{\mathcal{K}}{\nabla}p=f$, one can convert it into a system of two first order PDEs: the Darcy law for the flux $u=-{\mathcal{K}{\nabla}p$ and conservation of mass ${\nabla}{\cdot}u=f$. A very natural mixed finite volume method for this system is to seek the pressure in the nonconforming P1 space and the Darcy velocity in the lowest order Raviart-Thomas space. The equations for these variables are obtained by integrating the two first order systems over the triangular volumes. In this paper we show that such a method is really a standard finite element method with local recovery of the flux in disguise. As a consequence, we compare two approaches in analyzing finite volume methods (FVM) and shed light on the proper way of analyzing non co-volume type of FVM. Numerical results for Dirichlet and Neumann problems are included.

  • PDF

Hydrodynamic Characteristics of a Small Bee in Hovering Flight

  • Ro, Ki-Deok;Kim, Kwang-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.100-109
    • /
    • 2008
  • The three-dimensional flows in the Weis-Fogh mechanism are studied by flow visualization and numerical simulation by the vortex method. The vortex method. especially the vortex stick method, is employed to investigate the vortex structure in the wake of the two wings. The pressure is estimated by the Bernoulli equation, and the lift on the wing are also obtained. As the results the eddies near the leading edge of each wing in the fling stage take a convex shape because the eddies shed from both tips entrain the flows and the downwash in the rotating stage is deflected toward the outside because the outside tip vortex is stronger than the inside one. And the lift coefficient on the wings in this mechanism is almost independent of the Reynolds number.

Extension and Appication of Total Least Squares Method for the Identification of Bilinear Systems

  • Han, Seok-Won;Kim, Jin-Young;Sung, Koeng-Mo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.1E
    • /
    • pp.59-64
    • /
    • 1996
  • When the input-output record is available, the identification of a bilinear system is considered. It is assumed that the input is noise free and the output is contaminated by an additive noise. It is further assumed that the covariance matrix of the noise is known up to a factor of proportionality. The extended generalized total least squares (e-GTLS) method is proposed as one of the consistent estimators of the bilinear system parameters. Considering that the input is noise-free and that bilinear system equation is linear with respect to the system parameters, we extend the GTLS problem. The extended GTLS problem is reduced to an unconstrained minimization problem, and is solved by the Newton-Raphson method. We compare the GTLS method and the e-GTLS method in the point of the accuracy of the estimated system parameters.

  • PDF

An Analysis of the Flow and Sound Field of a Ducted Axial Fan (덕트가 있는 축류홴의 유동 및 음향장 해석)

  • Jeon, Wan Ho;Chung, Ki Hoon;Lee, Duck Joo
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.208-217
    • /
    • 1999
  • The present work describes the prediction method for the unsteady flow field and the acoustic pressure field of a ducted axial fan. The prediction method is comprised of time-marching free-wake method, acoustic analogy, and the Helmholtz-Kirchhoff BEM. The predicted sound signal of a rotor is similar to the experiment one. We assume that the rotor rotates with a constant angular velocity and the flow field around the rotor is incompressible and inviscid. Then, a time-marching free-wake method is used to model the fan and to calculate the flow field. The force of each element on the blade is calculated by the unsteady Bernoulli equation. Lowson's method is used to predict the acoustic source. The newly developed Helmholtz-Kirchhoff BEM for thin body is used to calculate the sound field of the ducted fan. The ducted fan with 6 blades is analysed and the sound field around the duct is calculated.

  • PDF