• Title/Summary/Keyword: Ondol Floor

Search Result 143, Processing Time 0.031 seconds

Establishment of Optimum Floor Surface Temperature Floor in Ondol Heating System (온수온돌 난방시 바닥면의 중성온도 설정에 관한 연구)

  • 공성훈
    • Journal of the Korean housing association
    • /
    • v.6 no.2
    • /
    • pp.51-55
    • /
    • 1995
  • This study presents a real neutral floor surface temperature in floor panel heating system(Ondol). The Ondol heating system can keep the constant temperature. However, the actual temperature when a person sits on a floor can be different from the surface temparature of a floor it self. The contents of this study are as follows : 1) measuring the spatial distributions of thermal conditions 2) the thermal sensation vote of residents is taken in order to investigate the relation between thermal condition and human thermal sensation in sedentary condition 3) estimating the neutral floor surface temperatures by measuring floor surface temperatures.

  • PDF

Floor Heating Characteristics of Latent Heat Storage - Bioceramic Ondol - Focused on Theoretical Analysis - (잠열 축열 - 바이오 세라믹 온돌의 난방 특성 - 이론적 분석을 중심으로 -)

  • 송현갑;유영선
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1995.05a
    • /
    • pp.213-222
    • /
    • 1995
  • Korean traditional Ondol with the sensible heat storage medium has been for a long time used as residential heating system, in these days the concrete Ondol without the heat storage medium was realized as the heating system in the private houses and the apartments. This floor heating system is good for our health. But the concrete Ondol is not desirable for the energy saving and for the maintenance of comfortable room temperature because the heat storage medium is not employed in the concrete Ondol. And as the hot water circulating pipes ate buried under the the concrete floor, the concrete Ondol system has some kind of problems to be improved. Therefore the new type of Ondol system was developed in this study. And the new Ondol was consisted of latent heat storage material as heat storage medium with a great heat capacity and bioceramics as medium to maintain comfortable room temperature. In this study, the heat transfer characteristics of latent heat storage-bioceramic Ondol was analyzed theoretically.

  • PDF

Transient Heat Conduction Through the Ondol Floor and Beat toss to the Ground (온돌의 구들장과 땅바닥의 비정상 열전도 해석)

  • Bae, Soon-Hoon;Kim, Doo-Chun
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.4 no.1
    • /
    • pp.6-17
    • /
    • 1975
  • For a periodic variation of the flue gas temperature the heat conduction through the Ondol floor was analysized. Also the heat loss to the ground was estimated. The floor thermal capacity, as a function of the floor thickness, has strong influence on the time lag of the temperature variation. It is an important design parameter for intermittent heating. Even for the steady periodic variation, there was significant heat loss to the ground below the Ondol floor.

  • PDF

The Korean under-floor heating system 'ondal' (온돌과 효율)

  • Kim, Ji-Tae
    • Korean Architects
    • /
    • v.3 no.10 s.10
    • /
    • pp.49-53
    • /
    • 1968
  • The heating system, ondol is indispensable for the Korean traditional houses. In the field of architecture today has been made rapid progress in Korea, but it is fact that under-floor heating system in traditional houses in korea has not improved up to now. As a matter of fact, to improve the traditional ondol under present housing structure is very difficult problem. So long as we live in such houses, we architects will have to fulfil our responsibility to improve the ondol system. This article offering data as a basic experiment will be helpful in studing under-floor heating system ondol.

  • PDF

Rethinking the Construction Period of the Ondol Heating System at Hoeamsa Monastery Site (회암사지 온돌의 조성시기에 관한 연구)

  • Lim, Jun-Gu;Kim, Young-Jae
    • Journal of architectural history
    • /
    • v.31 no.1
    • /
    • pp.19-28
    • /
    • 2022
  • The construction period of the ondol (Korean floor heating system) at Hoeamsa Temple Site is known as Joseon. The main reason is that a large number of remains in the Joseon era were excavated from the ondol floor with an all-around ondol method. This article partially accepts the theory of the creation of Ondol at Hoeamsa Temple Site during the Joseon Dynasty and suggests a new argument that some Ondol remains were built during the Goryeo Dynasty. The grounds for them are as follows. First, through the building sites consistent with the arrangement of the Cheonbosan Hoeamsa Sujogi (天寶山檜巖寺修造記, Record of Repair and Construction of Hoeamsa at Cheonbosan Mountain), it is highly likely that the ondol remains as a basic floor was maintained during the reconstruction period in Goryeo. Second, the all-around ondol method of the Monastery Site has already been widely used since the Goryeo Dynasty. Third, some ondol remains consist of "Mingaejari" and "Dunbeonggaejari," which were the methods of the gaejari (which dug deeper and stayed in the smoke) in the pre-Joseon Dynasty. Based on the above evidence, this study argues that the building sites such as Dongbangjangji, Seobangjangji, Ipsilyoji, Sijaeyoji, Susewaryoji, Seogiyoji, Seoseungdangji, Jijangryoji, and Hyanghwaryoji were constructed during the late Goryeo Dynasty.

Effect of Adhesive Type Applying to Surface-Strengthening Wood Floor on Level of Attachment (접착제 종류 따른 표면강화 온돌마루의 부착 특성)

  • Kim, Kyoung-Hoon;Baek, Byung-Hoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.13-14
    • /
    • 2012
  • This study investigates the effect of adhesive type applying to surface-strengthening Ondol floor on level of attachment. Adhesive materials of four types produced in different companies were prepared and their attaching performance was examined. Test results showed that the water-based epoxy type produced in S company was the most effective on attaching the pieces of the surface-strengthening Ondol floor product.

  • PDF

A Calculation Method on Heat Flux from Ondol Floor Surface (온돌면(溫突面)의 방열량(放熱量) 산정방법(算定方法)에 관한 연구(硏究))

  • Sohn, Jang Yeul;Ahn, Byung Wook;Pang, Seung Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.1 no.2
    • /
    • pp.173-181
    • /
    • 1989
  • Until recently there was a lack of reliable performance data for the design and operation of Ondol heating systems. This paper presents a calculation method on heat flux from Ondol floor surface. Total heat flux from floor consists of radiation and convection component. In order to analyse the characteristics of both radiation and convection heat flux, each surface temperature is measured and several temperatures near each wall are measured vertically and horizontally in a practical Ondol heating space. Radiation heat flux is calculated and analysed by Gebhart's Absorption Factor Method with the consideration of instantaneous radiant exchanges. Convection heat output is derived from the vertical temperature profiles near floor. The vertical temperature profiles could be expressed by nonlinear regression equation models and convection coefficients could be estimated by the equations. As a result, radiation, convection and total heat flux are suggested by the expression of difference between floor surface and room air temperature.

  • PDF

A Study on the Korean Ondol-System Application in Apartment Houses (공동주택의 한국형 온돌시스템 적용에 관한 연구)

  • Ahn, Min-Hee;Choi, Chang-Ho;Yu, Ki-Hyung;Cho, Dong-Woo
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.860-865
    • /
    • 2006
  • The traditional Korean Ondol System that is a radiant floor heating system was made as warm floor and cool indoor temperature. Nowaday, Ondol is developed as the hydronic floor heating system. But unbalance of floor temperature and indoor temperature is occurred bocause strengthen thermal insulation and airtightness in building changes thermal performance. To solve these problems, we examine actual indoor environment of heating system methods in existing apartments and present the new method of floor heating system. The existing heating system made definite indoor temperatures but floor temperatures that is $22^{\circ}C-26^{\circ}C$ was maintained. To solve these problems, we adopted the differential heating system which made warm area and cool area. A differential heating system was made different pitches of heating pipe in single zone and ratio of warm area to cool area is 1 to 2. As a result of experiments, warm area temperature is $40.7^{\circ}C$, cool area temperature is $36.1^{\circ}C$. A difference of temperature between both area is 4K. A distribution of indoor vertical temperature is similar to both warm area and cool area.

  • PDF

The Evaluation of Performance of Finishing Mortar in Ondol Floor Structure Using High-Calcium Fly Ash (고칼슘 플라이애시를 활용한 온돌 바닥용 모르타르의 물성 평가)

  • Lee, Yeong-Won;Song, Young Chan;Kim, Yong-Ro;Mun, Kyoung-Ju
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.289-291
    • /
    • 2013
  • This study evaluated basic material properties of finishing mortar in ondol floor using NSB(Non-sinetering binder), and the binder for the purpose of the developing of high performance mortar and reducing crack problem without shrinkage-reduction agent.

  • PDF

An Experimental Study on Heat Transmission Characteristics of the Conventional and Prefabricated Ondol (기존온수온돌과 조립식 온수온돌의 전열특성에 관한 실험적 연구)

  • Min, J.H.;Lee, C.G.;Jang, M.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.4
    • /
    • pp.611-621
    • /
    • 1995
  • The objectives of this study are to find out and to analyze the heat transmission characteristics of the conventional and prefabricated Ondol systems. To compare the thermal characteristics of these Ondol, a real sized Ondol model is set in a chamber. Hot water whose temperature is varied from $45^{\circ}C$ to $60^{\circ}C$ with $5^{\circ}C$ interval is supplied to each Ondol system. At that time the temperature distribution of floor surface, the amount of supplied heat, the heat radiation aspect and the heat loss from the floor to the underground are measured and analyzed simultaneously. As a result, even if the supplied hot water temperature to the prefabricated Ondol panel is lower by about $5^{\circ}C$ than that of the conventional Ondol panel, the net radiant effect is same. Heat radiation efficiency of the prefabricated Ondol panel is over 5% better than that of the conventional Ondol panel. It takes 12 hours for the conventional Ondol and 45 minutes for the prefabricated Ondol, respectively to reach steady state.

  • PDF