• Title/Summary/Keyword: On-set Timing

Search Result 166, Processing Time 0.025 seconds

Extracting the K-most Critical Paths in Multi-corner Multi-mode for Fast Static Timing Analysis

  • Oh, Deok-Keun;Jin, Myeoung-Woo;Kim, Ju-Ho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.6
    • /
    • pp.771-780
    • /
    • 2016
  • Detecting a set of longest paths is one of the crucial steps in static timing analysis and optimization. Recently, the process variation during manufacturing affects performance of the circuit design due to nanometer feature size. Measuring the performance of a circuit prior to its fabrication requires a considerable amount of computation time because it requires multi-corner and multi-mode analysis with process variations. An efficient algorithm of detecting the K-most critical paths in multi-corner multi-mode static timing analysis (MCMM STA) is proposed in this paper. The ISCAS'85 benchmark suite using a 32 nm technology is applied to verify the proposed method. The proposed K-most critical paths detection method reduces about 25% of computation time on average.

The investigation of a new fast timing system based on DRS4 waveform sampling system

  • Zhang, Xiuling;Du, Chengming;Chen, Jinda;Yang, Herun;kong, Jie;Yang, Haibo;Ma, Peng;Shi, Guozhu;Duan, limin;Hu, Zhengguo
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.432-438
    • /
    • 2019
  • In the study of nuclear structure, the fast timing technique can be used to measure the lifetime of excited states. In the paper, we have developed a new fast timing system, which is made up of two $LaBr_3:Ce$ detectors and a set of waveform sampling system. The sampling system based on domino ring sampler version 4 chip (DRS4) can digitize and store the waveform information of detector signal, with a smaller volume and higher timing accuracy, and the waveform data are performed by means of digital waveform analysis methods. The coincidence time resolution of the fast timing system for two annihilation 511 keV ${\gamma}$ photon is 200ps (FWHM), the energy resolution is 3.5%@511 keV, and the energy linear response in the large dynamic range is perfect. Meanwhile, to verify the fast timing performance of the system, the $^{152}Gd-2_1^+$ state form ${\beta}^+$ decay of $^{152}Eu$ source is measured. The measured lifetime is $45.3({\pm}5.0)ps$, very close to the value of the National Nuclear Data Center (NNDC: $46.2({\pm}3.9)ps$). The experimental results indicate that the fast timing system is capable of measuring the lifetime of dozens of ps. Therefore, the system can be widely used in the research of the fast timing technology.

Designing Distributed Real-Time Systems with Decomposition of End-to-End Timing Donstraints (양극단 지연시간의 분할을 이용한 분산 실시간 시스템의 설계)

  • Hong, Seong-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.5
    • /
    • pp.542-554
    • /
    • 1997
  • In this paper, we present a resource conscious approach to designing distributed real-time systems as an extension of our original approach [8][9] which was limited to single processor systems. Starting from a given task graph and a set of end-to-end constraints, we automatically generate task attributes (e.g., periods and deadlines) such that (i) the task set is schedulable, and (ii) the end-to-end timing constraints are satisfied. The method works by first transforming the end-to-end timing constraints into a set of intermediate constraints on task attributes, and then solving the intermediate constraints. The complexity of constraint solving is tackled by reducing the problem into relatively tractable parts, and then solving each sub-problem using heuristics to enhance schedulability. In this paper, we build on our single processor solution and show how it can be extended for distributed systems. The extension to distributed systems reveals many interesting sub-problems, solutions to which are presented in this paper. The main challenges arise from end-to-end propagation delay constraints, and therefore this paper focuses on our solutions for such constraints. We begin with extending our communication scheme to provide tight delay bounds across a network, while hiding the low-level details of network communication. We also develop an algorithm to decompose end-to-end bounds into local bounds on each processor of making extensive use of relative load on each processor. This results in significant decoupling of constraints on each processor, without losing its capability to find a schedulable solution. Finally, we show, how each of these parts fit into our overall methodology, using our previous results for single processor systems.

  • PDF

Bounding Worst-Case Data Cache Performance by Using Stack Distance

  • Liu, Yu;Zhang, Wei
    • Journal of Computing Science and Engineering
    • /
    • v.3 no.4
    • /
    • pp.195-215
    • /
    • 2009
  • Worst-case execution time (WCET) analysis is critical for hard real-time systems to ensure that different tasks can meet their respective deadlines. While significant progress has been made for WCET analysis of instruction caches, the data cache timing analysis, especially for set-associative data caches, is rather limited. This paper proposes an approach to safely and tightly bounding data cache performance by computing the worst-case stack distance of data cache accesses. Our approach can not only be applied to direct-mapped caches, but also be used for set-associative or even fully-associative caches without increasing the complexity of analysis. Moreover, the proposed approach can statically categorize worst-case data cache misses into cold, conflict, and capacity misses, which can provide useful insights for designers to enhance the worst-case data cache performance. Our evaluation shows that the proposed data cache timing analysis technique can safely and accurately estimate the worst-case data cache performance, and the overestimation as compared to the observed worst-case data cache misses is within 1% on average.

A Temporal Relational Database:Modeling and Language

  • Kim, Jae-Kyeong
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.20 no.2
    • /
    • pp.139-158
    • /
    • 1995
  • A temporal database systems provides timing information and maintains history of data compared to the conventional database system. In this paper, we present a temporal relational database which use an interval-stamping method for instant-based events and for interval-based states. A set of temporal algebraic operators are developed on an instance of time and interval of time so that we can manipulate events and states at a same time. The set of operation is the basis for creating a relational algebra that is closed for temporal relations. And temporal SQL is also suggested as a temporal query relational language for our algebraic operations on temporal relations.

  • PDF

Airline Disruption Management Using Ant Colony Optimization Algorithm with Re-timing Strategy (항공사 비정상 운항 복구를 위한 리-타이밍 전략과 개미군집최적화 알고리즘 적용)

  • Kim, Gukhwa;Chae, Junjae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.2
    • /
    • pp.13-21
    • /
    • 2017
  • Airline schedules are highly dependent on various factors of uncertainties such as unfavorable weather conditions, mechanical problems, natural disaster, airport congestion, and strikes. If the schedules are not properly managed to cope with such disturbances, the operational cost and performance are severely affected by the delays, cancelations, and so forth. This is described as a disruption. When the disruption occurs, the airline requires the feasible recovery plan returning to the normal operations in a timely manner so as to minimize the cost and impact of disruptions. In this research, an Ant Colony Optimization (ACO) algorithm with re-timing strategy is developed to solve the recovery problem for both aircraft and passenger. The problem consists of creating new aircraft routes and passenger itineraries to produce a feasible schedule during a recovery period. The suggested algorithm is based on an existing ACO algorithm that aims to reflect all the downstream effects by considering the passenger recovery cost as a part of the objective function value. This algorithm is complemented by re-timing strategy to effectively manage the disrupted passengers by allowing delays even on some of undisrupted flights. The delays no more than 15 minutes are accepted, which does not influence on the on-time performance of the airlines. The suggested method is tested on the real data sets from 2009 ROADEF Challenge, and the computational results are compared with the existing ones on the same data sets. The method generates the solution for most of problem set in 10 minutes, and the result generated by re-timing strategy is discussed for its impact.

The Effect of Injection Timing and Cavity Geometry on Fuel Mixture Formation in a Central Injected DI Gasoline Engine (중앙 분사방식의 직분식 가솔린 기관에서 연료 혼합기 형성에 미치는 분사시기와 캐비티 형상의 영향)

  • 김태안;강정중;김덕줄
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.32-38
    • /
    • 2004
  • This study was performed to investigate the behavior of liquid and vapor phase of fuel mixtures with different piston cavity diameters in a optically accessible engine. The conventional engine was modified as Central Injected DI gasoline engine with swirl motion. Two dimensional spray fluorescence images of liquid and vapor phase were acquired to analyze spray behavior and fuel distribution inside of cylinder using exciplex fluorescence method. Piston cavity geometries were set by Type S, M and L. The results obtained are as follows. In the spray formation after SOI, the cone angle and width of the spray were decreased at late injection timing. With a fuel injection timing of BTDC $180^{\circ}C$, fuel was not greatly affected in a piston cavity but generally distributed as homogeneous mixture in the cylinder. With a fuel injection timings of BTDC $90{\circ}C$ and $60^{\circ}C$, fuel mixture was widely distributed in near the cavity center. As a injection timing was late in the compression stroke, residual width of fuel mixture was narrow in proportion to piston cavity.

Relationship between Lower -Limb Joint Angle and Muscle Activity due to Saddle Height during Cycle Pedaling (사이클 페달링 시 안장높이에 따른 하지관절 각도와 근육활성화의 상관관계)

  • Seo, Jeong-Woo;Choi, Jin-Seung;Kang, Dong-Won;Bae, Jae-Hyuk;Tack, Gye-Rae
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.3
    • /
    • pp.357-363
    • /
    • 2012
  • The purpose of this study was to investigate the effects of different saddle heights on lower-limb joint angle and muscle activity. Six elite cyclists(age: $32.2{\pm}5.2years$, height: $171.0{\pm}3.5cm$, weight: $79.7{\pm}5.6kg$, cycle career: $13{\pm}6.2years$) participated in three min. submaximal(90 rpm) pedaling tests with the same load and cadence based on saddle heights where subject's saddle height was determined by his knee flexion angle when the pedal crank was at the 6 o'clock position. Joint angles(hip, knee, ankle joints) and the activity of lower limb muscles(biceps femoris(BF), vastus lateralis(VL), tibialis anterior(TA) and gastrocnemius medial(GM)) were compared by measuring 3D motion and electromyography(EMG) data. Results showed that there were significant differences in minimum hip & knee joint angle and range of motion of hip and knee joint between saddle heights. Onset timing and integrated EMG of only BF among 4 muscles were significantly different between saddle heights. Especially there was a negative relationship between minimum hip joint angle and onset timing of BF in most subject, which means that onset timing of BF became fast as the degree of bending of the hip joint became larger by saddle height. Optimal pedaling will be possible through increased amount of muscle activation due to the appropriate burst onset timing by proper pedaling posture with adjusted saddle height.

The Impact of Vibration Exercises on Shoulder Muscle Thickness

  • Jeong, Jin-Gyu;Park, Jae-Cheol
    • The Journal of Korean Physical Therapy
    • /
    • v.30 no.4
    • /
    • pp.117-122
    • /
    • 2018
  • Purpose: The objective of this study was to examine the effect of vibration exercises generated from an $XCO^{(R)}$ trainer on supraspinatus, infraspinatus, teres minor, and deltoid muscle thickness. Methods: Thirty subjects were evenly divided into two groups. Muscle thickness was measured by a sonogram prior to the study, and at three and six weeks after the intervention. Changes in muscle thickness were analyzed using a repeated measure analysis of variance (ANOVA). The significance level for the statistical test was set at ${\alpha}=0.05$. Results: A statistically significant differences in timing, interactions between timing and the groups, and between-group changes were demonstrated for supraspinatus muscle thickness (p<0.05). A similar finding was reported for infraspinatus, teres minor, and deltoid muscles with regard to the interactions between timing and the groups (p<0.05), although the between-group change did not reach statistical significance (p>0.05). Conclusion: Significant changes were observed in the thickness of the supraspinatus, infraspinatus, teres minor, and deltoid muscles, owing to the use of vibration exercises generated from an $XCO^{(R)}$ trainer. These findings can be used as a foundation for future studies on rehabilitation training.

An Investigation of the Effect of Changes in Engine Operating Conditions on Ignition in an HCCI Engine

  • Lee, Kyung-Hwan;Gopalakrishnan, Venkatesh;Abraham, John
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.10
    • /
    • pp.1809-1818
    • /
    • 2004
  • The dependence of the ignition timing in an HCCI engine on intake temperature and pressure, equivalence ratio, and fuel species is investigated with a zero-dimensional model combined with a detailed chemical kinetics. The accuracy of the model is evaluated by comparing measured and computed results in a propane-fueled HCCI engine. It is shown that the peak pressure values are reproduced within 10% and ignition timing within 5$^{\circ}$ CA. The heat loss through the walls is found to affect significantly on the ignition timing for different inlet conditions. It is also shown that for the propane-fueled engine, the tolerance in intake temperatures is 20-25K and the tolerance in intake pressure is about 1 bar for stable operation without misfire or too early ignition. Comparison of propane and heptane fuels indicates that the tendency to misfire when heptane is employed as the fuel is less than that when propane is employed with the same wall temperature conditions. However, the heptane-fueled engine may have a lower compression ratio to avoid too early ignition and hence lower efficiency. For the selected set of engine parameters, stable operations might be achieved for the heptane-fueled engine with twice as much tolerance in intake temperatures as for the propane-fueled engine.