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Abstract

A temporal database systems provides timing information and maintains history of data
compared to the conventional database systems. It this paper, we present a temporal relational
database which use an intervalstamping method {jr instant-based events and for interval-based
states. A set of temporal algebraic operators are de:veloped on an instance of time and interval of
time so that we can manipulate events and states at a same time. The set of operations is the
basis for creating a relational algebra that is closcd for temporal relations. And temporal SQL is
also suggested as a temporal query relational language for our algebraic operations on temporal

relations.

1. Introduction

Most conventional databases represent the stave of the universe of discourse at a particu-
lar instant of time, a static snapshot of the real world. As the real world changes, new
values are incorporated in the database by replacing the old values. Conventional database
systems maintain no history of changes. The database thus represents only the current
state of some domain rather a history of tha: domain [8, 10, 12, 17]. A temporal data
model, on the contrary, preserves the coraplete history of objects (entities and
relationships) by retaining their previous values. Many applications require storing and
accessing of such historical information. Examples can be found in scientific studies
(forecasting, medical care), and administrative :nd operational control (project management,
personal management) [4, 10, 111.

Many of the temporal relational data models use an object’s valid time in the real world
to timestamp data in a relational model. Sarda |14} has summarized the following four dif-
ferent methods for including timestamps at the representational level: (1) instant stamping

of tuples: ecach tuple includes a time value at -vhich the data in the tuple became current:
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(2) interval stamping of tuples: each tuple includes two time values that define a time inter-
val during which the data were current; (3) instant stamping of attributes: a time value is
associated with each attribute value, and (4) interval stamping of attributes: two time values
defining an interval are associated with each attribute value in a tuple. In addition, some hy-
brid representations have been created that provide both instant and interval stamping [7,
19]. The hybrid models require two distinct types of relations, which prevents the development
of a sound relational algebra that is closed for operations on relations. This paper uses inter-
val stamping method, because instances can be stored as intervals of zero length and time-in-
variant data as intervals of infinite length. Time stamping of attributes have been reported
that the results in relations not in first normal form provides difficulties to develop algebraic
operators. So, interval stamping of tuples is preferred because it retains the simple structure
of the relational data model. [2, 6, 11].

In this paper, we have examined two aspects of temporal relational databases: (1) an inter-
valstamping method for instant-based events and for interval-based states that can incorpor-
ate temporal uncertainty, and (2) a set of algebraic operators for interval-stamped relations
that is closed.

Our model of time uses the timepoint as the basis for representing both events and states.
We formalize an intervalstamping method that uses two timepoint attributes. Our data model
stores events and states as intervals using two timepoint attributes. The representation of
Navathe and Ahmed [12] assumes that the pair of attributes for interval timestamps, denoted
as TIME-START and TIME-STOP, are timepoints at a single granularity. If the value of an
attribute occurs only at a single point in time. the values of TIME-START and TIME-STOP
are equivalent. These researchers do not provide modeling techniques for handling incomplete
temporal data, such as interval ranges for events. They do not provide a direct way for relat-
ing concurrent data from two or more relations. This is regarded as a very basic requirement
for users of temporal databases. The question of different time granularities within the same
database is not yet addressed adequately. Sarda [14] models the temporal uncertainty of in-
stant-based data by timestamped events with timepoints of various granularities, such as
YEAR, YEAR:MONTH, and YEAR:MONTH:DAY. Each temporal relation in his data model
contains a pair of timepoint attributes that ar: FROM and TO, and that have a single suit-
able granularity for that table. To manipulate timestamped data at various granularities,
Sarda defines a set of operations on granularities. Instant-based data timestamped at a coarser
granularity are converted to an interval at finer database-defined granularity. Compared to
Sarda’s approach, our model of events and of :tates explicitly represents the temporal uncer-

tainty associated with timestamped data. For sach interval-based datum, we represented Un-
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certain Interval (Certain Interval) during which we are uncertain (certain) of the state’s
value. Sarda does not make clear whether such ar interval exists in his temporal model. If the
granularity of start and stop timepoints can be converted to any finer level, then no single-de-
fined set of timepoints exists to bound the interval. Our representation for handling the im-
precision of timestamped data, thus, differs sigrificantly from Sarda’s granularity-based rep-
resentation, and overcomes his model’s limitations in representing temporal uncertainty.

The standard set of relational operators does not form a proper algebra for temporal
relations. Previous researchers have noticed the iradequacy of standard operators as an algebra
for temporal relations, but few researchers have yet defined a closed temporal algebra for in-
tervalstamped relations [11, 12, 14]. In this research, we created our own set of temporal al-
gebraic operators: we defined a set that is closeld for temporal relations and that is complete
for supporting temporal operations. Our set of temporal algebraic operators differs from those
proposed by other researchers [2, 6, 9, 19] for scveral reasons. First, we establish a set-theor-
etic notion for temporal relations that uses time-tamping at the tuple level. Other researchers
[2, 6] have argued for timestamping at the attribute level, but their data models do not
maintain relations in first normal form. Second, we keep both events and states in a single
type of intervalstamped temporal relation. Dat: models that define two types of temporal
relations (one for events and one for states) do not have a unified set of algebraic operators
for both types [9, 19]. Third, we develop a closed set of algebraic operators that incorporates
the full range of temporal operations needed to q.ery timestamped data in temporal relation.

In brief, our main contributions to research c¢n temporal relational database are a general
representation for events and states and a well-defined semantics for manipulating timestamped
data.

The organization of this paper is as follows. Ii. Section 2, we discussed the set of temporal
operations that includes all basic comparisons &ad computations needed for interval-stamped
data, regardless of associated temporal uncertainty. In section 3, we addressed our own set of
temporal algebraic operators that is closed for teiaporal relations and that is complete for sup-
porting temporal operations. In section 4, we presented the syntax of a temporal SQL, TSQL.
And the data manipulation capabilities of our temporal operators are demonstrated with
example queries. In section 5, we make concliding remarks and further research area is

suggested.
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2. Temporal Relational Model

The elementary set of data values used in data models are called value domains, denoted
Up=iD,, Ds, ---,D.. Each D: is a set of values w~hich commonly include the set of integers and

the set of character strings [18]. The temporal relational model requires a special type of do-

main, the time domain (TD).
2. 1. Representation and Operations of Time Domain

Time can be measured using a clock of suitalle granularity. And time is usually discretized
as a linearly ordered set of temporal elements. {imepoints or time instances, on a timeline.
The time domain consists of a set of timepoirts. The timepoints have a granularity of the
smallest time unit that is of interest in the latabase application. In this paper, minute is
used as a granularity level but other level aso can be used according to the application
domains. The following notation is wused tc denote the wvalues in the time domain:
year/ month/ day hour:min. Two special timepoirts, -2 and NOW, are also included in the time
domain.

In the database design, the designer identifics entities, relationships, their identifiers, and
attributes. Alternatively, the designer identifies >bjects (or object type) for modeling them as
relations. Each object has a unique identifier .nd a set of functionally-dependent attributes.
Our data model stores three different t:pes of timestamped data: instance-based,

interval-based, and time-invariant.

Definition 1 Instance-based data, events, ar: objects which prevail for only one time

unit. An event occurs instantaneously and has no temporal duration.

When the temporal information associated witl an event is collected, the user may be uncer-
tain of the precise instant at which the event (ccurred. Qur model allow the user give an ap-
proximate interval of time during which the e’ent took place. Our model uses 1 day, 1440
minutes as a default value. Two timestamps are used to represent the lower and upper bounds

of the closed uncertain interval(UI) during whi h the event occurred.

Example 1. Suppose that a user timestamped he event of an english-test result as April 2,
1994, and he is certain that the event has occurred between 2 PM and 4 PM. Then the UI

representation of that event would have a start time of April 2, 1994 14:00 and an end time
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of April 2, 1994 15:59. If the user has no information about the occurrence of event, UI would
be April 2, 1994 00:00 and an end time of April i, 1994 23:5901

The lower and upper bounds of an UJ can be zqual if the user certainly knows the instant
associated with an event in the minute level. Since this data model represents events as Uls,
interval comparison methods are used to compare events with different intervals of uncertainty
(interval comparison methods are explained in next section). The storage of interval-based

and time-invariant data is based on combination of events.

Definition 2 Interval-based data, states, prevail over an interval of time, during which

none of the attributes change their values. Stctes are bounded by start and end events.

Consequently, both the start and end events of a state can be represented as uncertain
intervals. The closed interval between the upper bound of the start event and lower bound of
the end event, the maixn state, represents a certain interval(CI). The value of the state holds
true at each timestamp in the CI. Thus, the storage of a state requires three intervals in our

model. Figure 1 shows events (a), and states (b, z).

Definition 3 Time-invariant data are defined to be true for the current and all past
timestamps. They are stored as Cls, where the value for the start point is “—x”, and

that for the end point is “now’.

Our modeling of uncertainty is comparable to the temporal representations used in two arti-
ficial intelligence systems, both of which utilize -onstraint satisfaction approaches to temporal
reasoning: Console, et al. [3] and Dechter, et al. [5]. They model a variable interval as an in-
terval whose start and end points are not perfectly known. The wvariable interval is
represented by a pair of intervals: The first interval captures the uncertainty associated with
the start point of the variable interval, wherea- the second captures the uncertainty of the
end point. Or the variables in the constraint-network are modeled to correspond to timepoints,
which normally represent the start and end tirwes of interval-based data. The values of the
start and end times are constrained to a feasibl: interval of time with six different pieces of
information: the earliest and latest possible sturt time, the earliest and latest possible end
time, and the minimum and maximum possible duration. These representation is similar to our
definition of start and end events as UJs, anc hence the variable-interval representation is

similar to our state representation. Althougl our database model does not have the
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temporal-reasoning capabilities present in either Console’s or Decther’s constraint-satisfaction
approaches, we have rectified the inability of previous database models to support temporal

uncertainty.
2. 2 Temporal Relation

Instant-based, interval-based, and time-invariant data are modeled as UIs, CIs, or a combi-
nation of both. An jnterval-stamping method is defined for storing the three types of temporal
data within a single type of relational table. A relation in the standard model is any subset
of the cartesian product of one or more domaiis: DixD:x-- XD, [18]. Each relation that is

a subset of this product has a degree of n.

Definition 4 The temporal relation is defined to the subset of the Cartesian product that

includes time domain T«(start time) and Ti(end time): Dix DX XD, XTsXThx.

The temporal relation is represented as a t:aditional table form, like a standard relation.
Two columns TS and TE correspond to the Ts and Tk, are called timestamp attributes. The de-
gree of the temporal relation is k+2. Each row or tuple, of the table thus contains an inter-
val that represents the time period during whic1 the values of the nontemporal attributes, the
columns (A, A -, A.), are valid. With this iuterval stamping method, we can store the Ul
of an event within a single tuple, whereas thize tuples are needed to store the state: two
for the pair of Uls of the start and end even.s and one for the single CI of the main. To
distinguish these types of interval, two nontemjoral attributes are defined: Type and Interval.
Type is used to maintain the type of interval leing stored, the values of which can be event,
start, main, or end. Interval stores the length of an UI for maintenance of temporal uncer-
tainty,

In the following definitions, R, and R. are relations having the following relation schemes:
RUATS, TE, Aw, Aw, - ., Aw), RATS, TE, Awm, Ax, - , Aw), where Awm, Aw, - are
non-temporal attributes. The degree of Ri is Q-2 and that of R: is R+2. The variable T(R:)

corresponds to the set of temporal intervals in 1zlation R.

Example 2. Consider the following 3 relation scliemes:
EMPLOYEE _TEST(EmpNo, Test, Score, TS, Ti. Interval, Type),
EMPLOYEE(EmpNo, Position, Salary, TS, TE, Interval, Type),



E20% PR A Temporal Relational Database : Modeling and Language 145

PROJECT(EmpNo, Project, TS, TE, Interval, Ty»e).

In the EMPLOYEE _TEST relation, EmpNo is the number of employee, and Score is the
result of Test. TS and TE represent start time and end time of an event, respectively. Inter-
val is the length of UI and Type is used to derote whether the tuple is evenf in the case of
or start, main, or end in the case of
the others

EMPLOYEE _TEST is 7.0

event, interval-based state. TS, TE are temporal

attributes and are non-tempora. relations. And the degree of relation

Figure 1 shows tables, temporal relations of example 2. They store instant- and

interval-based data. Figure 1(a) represents Employee _Test table, temporal relation of events,
(b) represents Employee table, temporal relatior. of states, and (c) represents Project table,

temporal relation of states.

EmpNo Test Score TS TE Interval Type
33 English1 890 94/ 04/ 02 00:00 |94/ 04/ 02 23:59 1440 event
33 English1 780 94/ 08/ 17 00 00 | 94/ 08/ 17 23:59 1440 event
33 English1 940 94/ 12/ 02 00:00 |94/ 12/ 02 23:59 1440 event
33 computing 460 94/ 08/ 17 1000 |94/ 08/ 17 11:59 120 event
33 computing 440 94/ 08/ 17 14 00 | 94/ 08/ 17 15:59 120 . event

(a)

EmpNo | Position Salary TS TE Interval Type
33 Jr. Engineer 1200 94/ 04/ 02 (0:00 | 94/ 04/ 02 23:59 1440 start
33 Jr. Engineer 1200 94/ 04/ 03 (10:00 | 94/ 08/ 15 23:59 nuil main
33 Jr. Engineer 1200 94/ 08/ 16 (:0:00 | 94/ 08/ 16 23:59 1440 end
33 Jr. Engineer 1400 94/ 08/ 17 (:0:00 |94/ 08/ 17 23:59 1440 start
33 Jr. Engineer 1400 94/ 08/ 18 00:00 |94/ 12/ 01 23:59 null main
33 Jr. Engineer 1400 94/ 12/ 02 (0:00 | 94/ 12/ 02 23:59 1440 end

(b
EmpNo Project TS TE Interval Type
33 KPC94 _12 | 94/ 05/ 01 00:00 | 94/ 05/ 01 23:59 1440 start
33 KPC94__12 | 94/ 05/ 02 00:00 | NOW null main

Figure 1. Temporal relatior

(c

for events and states.
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The following methods are used to enforce temporal normalization of the temporal re-
lation: for any particular timepoint, each attribi.le of an object in the database have a single
or null value, which will result in the standard first normal form. And the pair of timepoint
attributes are always included as part of the <ey attributes for the relation. To make the
values of the timepoints a meaningful interval ‘or an event or for a state, the value of TS
either precedes or is equal to the value of the TE. Please refer Navathe and Ahmed [12] for

the definition temporal normalization.
2. 3 Temporal Operations

All timestamps in our data model have the s.me granularity, the finest level of interest in
the database application. Consequently, discrete .imestamps can be comparable to determine a
linear order using the standard comparison oper:tions. Temporal comparisons of intervals play
an important role in manipulating both instait-based data and interval-based data. Since
intervals are pairs of timepoints, comparisons between intervals are based on timepoint
comparisons of the lower and upper bounds; a complex set of comparisons can be made be-
tween two pairs of timepoints. The terms AT, 3EFORE, and AFTER are used to indicate the
comparison operators =, {, and ), respectively. The pair of timepoints, [t;, t:] are used to
represent a closed interval T. With this set, w.- can also make the mixed timepoint-interval
comparisons of a timepoint BEFORE an interval, AFTER an interval or DURING an interval by
representing the timepoint as a zerolength int:rval. Please refer Navathe and Ahmed [12
about interval comparison operators.

We define many operators and built-in functions on instants and intervals:

Definition 5 Instant Operators
a. INTERVAL(t), t:} returns the number of un is between the timestamps t: and t.
b. ADDTIME(t, x) adds x units to timestamp t to create a new timestamp. When
x=1, the function returns the next timestamrp: when x=-1, the function returns the
previous timestamps.
¢. MIN(ty, tz) returns the value ti if t:{=t:, ard returns the value t: if ti)te.
MAX(t;, t:) is defined vise verse.

Given any two intervals, T[t:, t-] and Ulu, u ], we define three different binary operations

to compute the union, difference, or intersection «f the intervals.
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Definition 6 Interval Operators
a. CONCATENATE (@) takes two overlapping (or adjacent) intervals and returns a new
interval that consists of the set of timepeints in either of the original intervals:
T & U = [MIN(t;, w), MAX(ts, w)].
If the operand intervals in CONCATENATE operation do not overlap or are not
adjacent, no new interval is created.
b. SUBTRACT (©) takes two intervals and removes from the first interval the points
common to both to create a new interval:
T® U = [t, ADDTIME(u, —1)], when t { u,
= [ADDTIME(u 1), t:|, when t: > u-
= [ty t2], if the intervals do no: overlap.
c¢. EXTRACT(&) takes two intervals, but retirns a new interval containing only those
points that are contained in both intervals:
T &® U = [MAX(ti, u), MIN(ts u)], if tle intervals overlap,
= NULL, if the intervals do not o rerlap.

We can apply these interval computations to any interval in the temporal relational data
model. The pair of intervals used in these throe binary operations, therefore, can be either

both of type Uls, both of type Cls, or a pair of each type.

3. Temporal Relational Algebra

The algebraic operations form a convenient basis for defining, understanding, translation,
optimization and execution of query language. Tle standard relational model defines the follow-
ing as primitive operators: Union(U), Set difference(—), Cartesian product(X), Projection(Il),
and Selection(s). Additional, and more useful, oyerations, such as join and intersection, can be
derived from these [18]. Although the five prim.tive operators are considered to be closed for
a relational query language, two of them (Cartsian product and Projection) can not be ap-
plied directly to temporal relations. The Cartesiin product of two temporal relations does not
result in another temporal relation, as each tujle in the resultant relation contains two sets
of intervals. The projection of a temporal relation is a temporal relation only when temporal
attributes, TS and TE are part of the attributes specified in the projection list.

We define a new set of operators that form a proper algebra for temporal relations. Using
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the methods to handle overlapping or adjacen: intervals, we modified the definition of the

standard operations to handle temporal operations.

Definition 7 Temporal projection
Temporal projection returns the temporal :itributes as well as the list of nontemporal
attributes to be projected:
R: = Iuaw-aoR, where II: represents t.mporal projection, (Aw,-,Ax) is the list of
nontemporal attributes to be projected. As a -esult, R: has the scheme R:A(TS, TE, Aw, A,
<oy Awi).

Standard selection produces a horizontal subset of a given relation. We use the standard
selection operator with its set of nontemporal predicate formulas, F. We add to this set the

set of temporal comparisons I' as conditions to restrict tuples.

Definition 8 Temporal selection
Temporal selection is defined as:
R: = or Ry, where R: has the scheme R:(1S, TE, Ax, Aw, -, Aw), Q=R and the set T
(R:) is equal to a subset of T(R:) that satisfy the specified temporal predicate.

We use the standard union operator and difference operator, since the result remains a tem-

poral relation.

Definition 9 Concatenate
Concatenate (K) is a unary operator that combines those tuples that have the same
nontemporal attribute values, but overlapping o1 adjoining intervals, into a single tuple with a

resultant interval created from concatenation of the operand intervals.

The prerequisite conditions of value-equivalent nontemporal attributes with adjacent interval
timestamps can occur from the application of ‘emporal projection. Concatenate operator does
not have a nontemporal equivalent in the stardard relational algebra. The concatenate oper-
ation has been defined previously by Navathe znd Ahmed [12] as the compress operation and
by Sarda [14] as the coalesce operation.

The Join operation is used to combine relatel tuples from two relations into single tuples.
This operation is very important for any relational database with more than a single relation,

because it allows us to process relationships among relations. Join is defined as a combination
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of the Selection and the Cartesian product. Cariesian product can not be applied directly to
temporal relations, so standard join should not be included in a sound temporal relational al-
gebra. Instead, we define three elementary temporal joins and two composite joins that can
combine timestamped data from two different relations and maintain the temporal attributes
as part of the keys for the resulting tuples. The variable T(R:) represents the set of temporal

intervals in relation R.

Definition 10 Temporal semijoin
Temporal semijoin returns the attributes of only the first operand. The set of temporal
comparisons is used in the Boolean comparison. denoted symbolically as I, to restrict the
results of the temporal semijoin. The operator is defined as:
Rs = Ri P onRy
where R: has the scheme R:(TS, TE, Awm, Awm, -+ , Awm), and the set T(R:) is equal to the

results of restricting the set T(R:) with the Booiean comparisons condition I'.

Definition 11 Extract join
The extract join results the extraction of overlapping intervals, and take the nontemporal
attributes from both operand relations. The definition of extract join is
R: = Ri X «® R
where R; has the scheme R:(TS, TE, Am, Awm, - , Axs), S = Q+R, and the set T(R:) is
equal to the resulting set of T(R1) & T(R:)

This type of temporal join has also been propcsed by Sarda [14] as the concurrent product

and by Navathe and Ahmed [12] as the tempora! join.

Definition 12 Subtract join

Subtract join is a counterpart to the extract join. The intervals in the resulting relation
are the intervals in the first relation subtracted from any overlapping intervals in the second
relation. As with the extract join, the nontemporal attributes are taken from both operand
relations. The values of the nontemporal attributes from the second relation are, as a conse-
quence, null in the resulting relation. The subtract join is defined as;

R = Ri [x o Ry

where R: has the scheme R:(TS, TE, Am, As, - , Axs), S = Q+R, and the set T(R:) is

equal to the resulting set of T(Ri) © T(R:).
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With these three elementary joins, we can alio define two additional joins: temporal outer
join and temporal theta join. The relationship between the temporal outer join and extract

join is the same as that between the standard cuter join and equijoin.

Definition 13 Temporal outer join

The temporal outer join returns the same tuples as does the extract join, along with tuples
representing the time periods when values from only one of the operand relations exist. These
dangling time periods are exactly those that we obtain by taking the subtract join of the
operand relations twice with the order of the «perands alternated. Temporal outer join is de-
fined as;

R: = Ri i «oR,,

where R: has the scheme Ri(TS, TE, Axm, Av - , Axs), S = Q+R, and the set T(R:) is
equal to the union of the resulting set of T(R: (& T(R:), and the resulting set of T(Ri) &
T(R:)

Definition 14 Temporal theta join

Temporal theta join is the temporal equivalert of the theta join in standard relational al-
gebra, where theta (6) is a set of relational operators({,),=,{=,>=,). Instead of restriction
to nontemporal ¢ conditions, the resulting tuple- in the operand relation satisfy the temporal
comparison I'. The attributes in the temporal theta join are from both operands. Temporal
theta join is defined as:

R: = Ri [q v Ry
where R: has the scheme Ri(TS, TE, Am, Ax. - , Aw), S = Q+R, and the set T(R:) is

equal to subset of the set of intervals in the ternporal outer join of the same operands.

The elementary set of operations for the teiaporal relational data model thus consists of
temporal semijoin, extract join, subtract join, temporal projection, selection, union, difference,
and concatenate. A requirement for a proper algebra is a set of operations on objects the
results of which are themselves the same type of object. Since the application of each tem-
poral operation on histories returns a history as a result, we have, consequently, defined a

closed set of operators for a temporal relational algebra.

Proposition 1 Temporel semijoin can be defined using only the set of standard

operators.

(proof)
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In terms of the standard operators, it is the projection onto the attributes of the first
operand of a join that is based on the temporal comparison I' by definition 8:

Ri X r Rz = TIRTS R TE R ase B ava) or{ Ri X R2).

The standard semijoin is defined as the projection of the attributes of the first operand
from the equijoin on attributes that the two operand relations share in common [18]. The
temporal semijoin, on the other hand, is one of ~he basic set of operators in the temporal al-
gebra. Note that the operation R: IX «pR. is gererally not equivalent to the operation R: X
«rRu.

Unlike the temporal semijoin, the extract join returns both sets of nontemporal attributes

with a single pair of timepoint attributes that ar: derived from the EXTRACT operation.

Proposition 2 Extract join can be defined using only the set of standard operators.
(proof)

According to definition 9, four possible pairs o’ timepoints can be returned based on which
is the maximum of the first timepoint values and which is the minimum of the second
timepoint values. We undertake a separate join ‘or each of these possibilities;: we then take

the union of the join results to obtain the final result, as follows:

Ri P «@R: = (IIr. 1 R TE R a0 Ri As R o R aved
O (R.TSR. TS. R TE=R. TS. R. Ts< 2. 76) (R1XRz))
UATT{Rre. TS, R TH. Ru. A1 -, BL Axg, R Al -, Re Ask
G (R.TS:R.TS. k. TE<k. T+ &. TE ®. TE) (R1XR2))
U(TT(R. 5. . TE. Ri. Au ) RL A, Re A - Re Ase
0 (k. TS2R.TS. R. TE<k. TE) (R: X R2))

UATT(R. TS, R TE. Ri Ast 0 RL Asa, Re Asi, = Re A 0

0 (R TSR T5. R TER. TE) (Ri> R2))

The subtract join returns both sets of nontenporal attributes from the operands with a
single pair of timestamp attributes. The values «f the attributes from the second operand re-
lation may be null. However, the necessity for siich a result is apparent in the incorporation

of the subtract join in the definition of the tempnral outer join.

Proposition 3 Subtract join can be defined using only the set of standard operators.

(proof)
The interval timestamps in the result of subtrict join can be derived by applying the SUB
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TRACT operation to the join of the operands. According to definition 6(b), three possibilities
exist for which timepoints to return: (1) the second interval’s starting point is during the
first interval, (2) the second interval’s ending point is during the first interval, or (3) the
first interval does not overlap with the second. With the standard operators, we first under-
take a separate join for each of these possibilities; we next project the appropriate timepoint
and the attributes of the first relation: and we then take the union of the three join results.
To obtain the final result, we take the Cartesian product of the resulting union and of a

tuple of null values that corresponds to the attributes of the second operand relation:

Ri 4 uoR: = ((Ilr. 15 ADDTIME(R: TS, —1). Re Ax, - R0 Avo)
0 (R.TSR. 75 R Ts<h. TE) (F1XRz))
U (TT(ADDTIME(R=. TE, 1), Ru. TS, Ru. Ass, — Ri. Asa)
0 (R.TE2R.TS, R.TER.TE) (X Rz))
U (TI(R. TS, Ri. TE. Ru A, . Ri. Ave)
0 (RuTER.TSOR B TSR TR ( RiXR2))) XAy, -+, Anr), where

(A, -, Ax) is a null values of R..[]

Like the temporal semijoin, the subtract join 's not symmetric.

Proposition 4 The temporal outer join can be defined using only the set of standard
operators.
(proof)
The temporal outer join of two relations is cefined as the union of the extract join of the
relations with the pair of subtract joins of the relations:
Ri pq woR:=(R1 P «oRe) U (R P w@R:) U (R P4 @Ry).
The union of these three temporal joins is feasible, since the degrees of the extract and sub-

tract joins are equivalent.[]

Proposition 5 The temporal theta join can he defined using only the set of standard

operators.
(proof)
The temporal theta join can be defined from the set of temporal operators only, as follows:

Ri I} ipRe=(Ri X rnpRe DG aon(Re X opR1).0
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Proposition 6 Temporal projection can be defined using only the set of standard
operators.
(proof)

Temporal projection is a simple modification o’ standard projection. We add the timestamp
attributes of the list of projected attributes to ohtain the result:

Than, — awBRi=Tr. . 20 T8 Av, - 20RO

The selection, the union, and the difference op.rators in our temporal relational algebra are
unmodified from the standard set. The concatenate operator cannot be derived from the set of

standard operators; thus, it is a primitive operator for the temporal relational data model.

4. A Temporal SQL and Example Queries

Defining a set of algebraic operations for a temporal relational data model is useful for
understanding and executing a temporal extension to SQL. Since the temporal relational data
mode]l is defined to maintain the underlying 7new of temporal data as timepoints on a
timeline, we call the query language Temporal SQL (TSQL). SQL meets the criteria for com-
pleteness as a relational query language, since it supports all operations in standard relational
algebra [18]. TSQL is also complete as a temporal query language for algebraic operations on
temporal relations. In this section, we defined sintax of TSQL only. A sequence of operations
to execute a query is beyond the scope of this rsearch and refer other researchers [4, 12, 14].
Next, we illustrate example temporal queries on he set of temporal relations in Figure 1 with

temporal relational algebra and TSQL.
4. 1 Temporal Query Syntax

TSQL is based on the simple structural framework of SQL, with syntactic extensions to sup-
port the set of temporal relational algebra. TSQL adds the following new constructs to stan-
dard SQL.

1. Selections based on temporal comparisons, usin - a WHEN clause.
2. Selections based on ordinal ordering, using th- terms FIRST, SECOND, THIRD, or LAST
in the SELECT clause.

3. Methods to perform concatenation of overlasping or adjoining intervals with the same
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nontimestamp values, using the term CONCATENATED in the SELECT clause.

4. Methods to perform the extract or subtract operation on intervals in two different
relations, using the terms CONCURRENT WITH (for extract) or NOT CONCURRENT
WITH (for subtract) in the WHEN clause.

4. 2 Queries with TSQL and temporal relational algebra

The set of temporal relational algebra that we have outlined in Section 3 provides the capa-
bilities for temporal querying of timestamped lata. We illustrate the expressiveness of the
temporal relational algebra with example temporal queries on the set of temporal relations in
Figure 1. With the mapping between the syntax of a temporal SQL and the semantics of tem-
poral relational algebra, we can write an equivalint TSQL query for each example query. These
four example queries illustrate how the applicat.on of our operators to temporal relations by

(a) temporal relational algebra, by (b) TSQL, ani by (c) temporal relation as a table.

Q1. During what time periods was emploree 33 a junior engineer receiving 1200 or

14002

(a) In temporal relational algebra, this query {ranslates to the following :
KT By usition: G Bupio = 55 1 Pusivion 1. nginr » “Sutay — 1200 sotms — <1300
EMPLOYEE).
(b) SELECT CONCATENATED EmpNo, Position
FROM EMPLOYEE
WHERE EmpNo = 33 AND Position = “Jr. Er gineer” AND
(Salary = *1200” OR Salary = “1400™)
(¢c) The temporal relation that results from application of these operators to the EM-
PLOYEE table follows:

EmpNo Position TS TE

33 Jr. Engineer 94/0-/02 00:00 94/12/02 23:59
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Q2. What are the values of any employee-tests performed during the day of August 17,
1994 for employee 332

(@) G Bwpxo — 350 TS TE DURING 9% G617 000 65 b 7255 o, 7S 0E 9oALs e 0w oo s oy 172nss ¢ EMPLOYEE _TEST.
(b) SELECT EmpNo, Test, Score, Interval, TYPE

FROM EMPLOYEE _TEST

WHEN ([TS, TE] DURING |94/ 08/ 17 00:00, 94/ 08/ 17 23:59]) OR (LTS, TE] EQUALS

|94/ 08/ 17 00:00, 94/ 08/ 17 23:59]"
WHERE EmpNo = 33

(c)

EmpNo Test Score TS TE interval Type
33 English1 780 94/ 08/ 17 00:)0 | 94/ 08/ 17 23:5% 1440 event
33 computing 460 94/ 08/ 17 10:)0 | 94/ 08/ 17 12:00 120 event
33 computing 440 94/ 08/ 17 14:)0 | 94/ 08/ 17 16:00 120 . event

Q3: What are the scores of any englishi test performed before employee 33 was junior

engineer with 1400 as a salary?

(a) Grm vo 91 a 7 b (EMPLOYEE _TEST [ «(EMPLOYEE TEST T8, EMPLOYEE TEST TE HEFORE 'EMPLOYEE.
TS, EMPLOYEE. TE)| G'(Emp_No = 13 A Pusition = “Jr. Engineer” ~ t8ars = i 11 EMPLOYEE).
(b) SELECT EMPLOYEE _TEST. EmpNo, EMPLOYEE _TEST. Test, EMPLOYEE _TEST.Score,
EMPLOYEE _ TEST. Interval, EMPLOYEE __TEST. TYPE
FROM EMPLOYEE _TEST, EMPLOYEE
WHEN | EMPLOYEE _TEST. TS, EMPLOYEE _T/'ST. TE| BEFORE
[EMPLOYEE. TS, EMPLOYEE. TE]
WHERE EMPLOYEE _TEST. EmpNo = 33 AND EMPLOYEE. EmpNo =33

(c)
EmpNo Position Score TS TE Interval Type
33 Jr. Engineer 890 94/ 04/ G2 00:10 | 94/ 04/ 02 23:59 1440 . event

@4: During what time periods was employee 33 either participating in project
KPC94__12 or junior engineer?

(a) K(nl(I’RUJE(T. FEmpNo, PROJECT. Project, EMPLOYEE. Position, EMPI )YEE. Salary) O(PROJECT. EmpNo = 33 A PROJECT. EmpNo — EMPLOYEE.

emro (PROJECT {x{uci EMPLOYEE)).
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(b) SELECT CONCATENATED PROJECT. EmpNo, PROJECT. Project, EMPLOYEE. Position,
EMPLOYEE. Salary
FROM PROJECT, EMPLOYEE
WHERE PROJECT. EmpNo = 33 AND PROJECT. EmpNo = EMPLOYEE. EmpNo
(c)

EmpNo Project Position Salary TS TE
33 KPC94 _'12 null null 94/ 02/ 01 00:00 94/ 04/ 01 23:59
33 KPC94 _12 Jr. Engineer 120C 94/ 04/ 02 00:00 94/ 08/ 16 23:59
33 KPC94 _12 Jr. Engineer 140C 94/ 08/ 17 00:00 94/ 12/ 02 23:59
33 KPC94 __12 null null 94/ 12/ 03 00:00 NOwW

5. Conclusions

In this paper, we have examined two aspects of temporal relational databases that had not
been addressed by other researches: (1) a time stamping method for instant-based events and
for interval-based states that can incorporate temporal uncertainty, and (2) a set of algebraic
operators for interval-stamped relations that is losed.

The set of temporal operations is discuss:d that includes all basic comparisons and
computations needed for interval-stamped data, regardless of associated temporal uncertainty. A
set of temporal algebraic operators are defined that is closed for temporal relations and that
i1s complete for supporting temporal operations. These operators give special consideration to
the timestamp attributes. Our set of temporal ilgebraic operators differs from those proposed
by other researchers for several aspects.

The main contributions of this research can b stated as a general representation for events
and states and a well-defined semantics for manipulating timestamped data in the temporal
relational database. The added complexity of the temporal representations and operations
underlying TSQL will be necessary. But it is exoected to be relatively easy compared to other
previous researches.

Our temporal database provides a relational ‘epresentation of temporal uncertainty that is
suitable for long-term storage of event and sta‘es. So it is a promising further research arca
to develop a temporal reasoning methods based on our representation of temporal uncertainty.

And it is also a further research area to integrate a temporal relational database with a

knowledge-base for a specific area.
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