542 MOt - Risgt - AXBISS ==X M3 = M5z 1997.10

Designing Distributed Real-Time Systems with
Decomposition of End-to-End Timing Constraints

otch x| el A|Zhe]

cl =22 o| st

TN 7
(Seong Soo Hong)

Abstract
as an extension of our original approach [8][9] which was limited to single processor systems. Starting from a

. In this paper, we present a resource conscious approach to designing distributed real-time systems

given task graph and a set of end-to—end constraints, we automatically generate task attributes (e.g., periods and
deadlines) such that (i) the task set is schedulable, and (i) the end-to-end timing constraints are satisfied. The
method works by first transforming the end-to-end timing constraints into a set of intermediate constraints on
task attributes, and then solving the intermediate constraints. The complexity of constraint solving is tackled by
reducing the problem into relatively tractable parts, and then solving each sub-problem using heuristics to
enhance schedulability. In this paper, we build on our single processor solution and show how it can be extended
for distributed systems. The extension to distributed systems reveals many interesting sub-problems, solutions to
which are presented in this paper. The main challenges arise from end-to-end propagation delay constraints, and
therefore this paper focuses on our solutions for such constraints. We begin with extending our communication
scheme to provide tight delay bounds across a network, while hiding the low-level details of network
communication. We also develop an algorithm to decompose end-to—end bounds into local bounds on each
processor of making extensive use of relative load on each processor. This results in significant decoupling of
constraints on each processor, without losing its capability to find a schedulable solution. Finally, we show,
how each of these parts fit into our overall methodology, using our previous results for single processor
systems.

Keywords : design methodology, fiming constraints, optimization, distributed, real-time systems

1. Introduction
Recent maturity of real-time scheduling and analysis

processor environments. The solution is derived by first
deriving a set of intermediate constraints on task
attributes (e.g., periods and deadlines) from the original
end-to—end requirements, and then using a constraint
solver to solve the constraints, such that the final
derived task set is schedulable. As can be expected, the

techniques (e.g., rate-monotonic and other variants of
static priority scheduling), and their incorporation into
industrial systems have established a periodic task model

as an essential vehicle for real-time systems deve-

lopment. In such a periodic task model, tasks are made
to run repeatedly at fixed rates interacting with each
other in a controlled manner. However,
applications become more diversified

modeling them as a set of independent, periodic tasks
gets more difficult. Many of today’s real-time systems
such as multimedia, manufacturing and vehicle control
synch-

as real-time
and complex,

svstems require sharing resources and data,
ronizing task executions, and timely flow of data through
multiple data paths on a distributed platform. These
systems often possess constraints which are established
between external inputs and outputs such as end-to-end
propagation delays, input and output jitter, as well as
rate constraints,

In this paper we address the problem of transforming
a high-level real-time system design into
(schedulable) periodic tasks. The current work extends
our original solution [8I[9], which was limited to single

a set of

A2} 1996, 10, 2., AL © 1997 10, 27.

5 Agdieta Fags A7) By

extension to a distributed system environment reveals
many interesting and difficult First,
incorporating schedulability criteria in the constraint
solver becomes more difficult, since we must now ensure
schedulability on each host as well as the network.
Second, we must effectively decouple the constraints for
different processors and the network to avoid being
forced to solve a very complex global optimization
problem. Third, the low-level networking details for
communication across the network should be hidden from
the programmer; yet the overheads due to network
interrupts, and problems due to limited buffer sizes of
network adaptors must be suitably accounted.

In extending our approach to distributed systems, we
find that the main difficulties arise from end-to-end
freshness constraints. For a single processor system, we
could defer precedence constraints to the scheduler,
thereby simplifying the problem; we now have to
explicitly enforce precedence through task phasing,
resulting in additional variables and complexity for the
constraint solver. In addition, we new

challenges.

have a

Journal of Control, Automation and Systems Engineering, Vol. 3, No. 5, October, 1997 543

sub-problem of decomposing end-to-end freshness bound
into a local bound for each delay component along the
data path. We present a solution to this new
sub-problem, and show how it can be integrated into
the overall approach. We also show how network
communication can be synthesized using a specific
network controller for Controller Area Network (CAN).

The extended solution inherits all the benefits of the
original approach: (1) It provides programmers with a
rapid prototyping tool which helps them build a running
prototype fast and locate bottlenecks in it; and (2) it
helps programmers fix and optimize the faulty design for
both correctness and performance. This is possible not
only because the system traceability is maintained
through the use of a semi—automatic approach, but also
because the constraint solver itself generates various
performance metrics.

In generating the solution, we do not address the
problem of scheduling the derived periodic tasks; instead
we rely on existing scheduling methods to do the job for
us. Likewise, we assume that the tasks and their
communications are already specified using a task graph
model. We also assume that the allocation of tasks to
processing hosts is given, that is we do not address the
task allocation problem. Finally, we perform all our
timing analysis on a notional global clock, and assume
that the local clock on each host is synchronized with
respect to this global time.

1. Related work

Real-time system design and scheduling have been
fertile areas of research in the last decade. We refer the
readers to {10] for an overview of design methods and
[3][17] for an overview of real-time scheduling. There
has been relatively less effort in the integration of design
and scheduling, and specifically the derivation of task
periods and deadlines from end-to-end constraints. In [1]
and [19] similar problems are addressed, but the focus
was more on schedulability analysis, and less on the
derivation of task parameters. There have also been

some studies on the decomposition of end-to-end
deadlines into local task deadlines [111[2)(7][18]. In
[111[2], various strategies for priority assignment are

proposed, all in essence using a proportionate deadline
assignment, and then using deadline monotonic priorities.
In [7] a heuristic algorithm is presented similar in spint
to our deadline decomposition algorithm, but does not
attempt to isolate bottleneck tasks or provide feedback on
failure. Finally, [16] also addresses deadline decom-
position, but does not consider resource contention. Their
performance metric involves maximizing the minimum
(normalized) laxity for each task.

A similar end-to-end scheduling problem is
encountered in real-time communication over multiple
hops, where an end-to-end delay bound must be
decomposed into deadlines at each hop of the network
[6][12]. The end-to-end deadline scheduling problem is
very similar to decomposition of freshness bounds.
However, we could not use the solutions available in the

literature since unlike the problems studied above, we
had multiple interacting end-to-end deadlines, instead of
a single one. Furthermore, we believe that our objective
function gives much better answers, as it incorporates
knowledge about relative load on each processor, and the
amount of utilization available to each task.
2. Remainder of the paper

The remainder of the paper is organized as follows.
Section 2 presents the application and system models and
defines our problem. Section 3 briefly
single-processor approach our distributed extension is
based on, and gives an overview of the extended
solution. Section 4 shows how the intermediate constraint
derived

reviews the

system is from a given application and
end-to-end timing constraints. Section 5, which is the
crux of our approach, discusses the constraint solver
algorithm and demonstrates its strategy with a simple
but representative example. Section 6 details the
implementation of a network channel. Finally, in Section

7 we conclude the paper with future research directions.

I1. Problem description and solution overview

In this section, we elaborate on the system and
application model.

1. System and network model

We consider a distributed system of processing hosts,
connected together by a suitable communication network.
The sensors and actuators used for external inputs and
outputs are considered directly attached to hosts via the
host's local 10 bus. For simplicity we assume that the
local clocks are all synchronized to a global time-base,
and all our analysis is done with respect to this glohal
time-base. This assumption does not impose a serious
restriction, since we can tighten up the end-to-end
constraints to accommodate local clock drift.

The communication network should be capable of
guaranteeing bounded message transfer delays [23]. In
our application model, messages are generated
periodically, and many papers have addressed the
problem of guaranteeing real-time deadlines for
periodically generated messages, on a variety of networks
and protocols, for example FDDI [4], slotted-ring [15],
DQDB [18] and CAN [21]. For the purpose of analysis,
we assume that a scheduling mechanism exists that can
verify whether a given set of periodic message streams,
with deadlines less than period, are schedulable. The
deadline reflects the time duration starting from the time
the message is queued for transmission at the sender
and finishing when the message is delivered on the
receiver’s buffers [22](21].

2. Application model: partitioned asynchronous task graph

An application is rendered in our framework as an
asynchronous task graph (ATG), as in [9], but extended
to incorporate communication across a network. For a
given graph G(V,E).
e PUDUC, where

periodic tasks,

P={z7,..,r,} ie, the set of
D={d,,....d,} a set of asynchronous,

buffered data channels, and C={c¢,...,c,} a set of

network channels. The external outputs and inputs are
simply typed data channels in D.

o EC(PxD)U(DXP)U(PxQU(CxP) is a set of
directed edges between tasks and channels (data or
network). z; — d, denotes task r,'s write access to
data channel d, and d; — r, does r,'s read access to
d,, We do not permit multiple incoming edges to a
single channel in order to avoid a consistency problem?).
A channel with multiple incoming edges can be
translated into multiple, replicated ones, each of which is
connected to a single incoming edge.

® Each ;€ P has the following

attributes: a period T, an offset 0,=0 (denoting the

earliest start-time from the start-of-period), a deadline
D,<T, (dencting the latest finish-time relative to the

(computation) task

start-of period), a maximum execution time e, and a
phase ¢,=20 (denoting the invocation time for the first
[Oi, Dz]

constrains the window W, of execution for the task,

instance of the periodic task). The interval

where W,= D,;,— O,. Intuitively, the phase of a periodic
task is the time when its first request is made since the
entire system was made to run. Note that all periodic
tasks need not be initiated at the same time, unlike
real-time systems found in [14][13].

® Network channels abstract the underlying network
communication, and carry periodic message streams
from a sender task to one or more receiver tasks. Each

called a

network task, and has the following attributes: a period
T”, a deadline D?<T/, maximum message trans—
time e”, and a phase ¢7. Simply, a
network channel is associated with a network task.
Without loss of generality, the offset of all network
tasks 1s 0 . Note that a message can be transmitted at
any time within its period, so long as it i1s made
available by the sender.

Structurally, an ATG may be viewed as a set of
disjoint

message stream m, on channel ¢, is

mission

sub-graphs, 1if we remove the vertices
corresponding to network channels (and all edges
incident on those vertices). We call each such disjoint
sub-graph a partition. Each partition is mapped to a
single host. The mapping of partitions to hosts defines
the allocation of tasks, and we assume that this mapping
is already defined. Thus the task graph represents static
task allocation, and its structure is not changed at
run-time. The network channels delineate the boundary
between tasks on two partitions, and denote the message
transfer over the network.

The semantics of an ATG is as follows. Whenever a
task 7, executes, it reads data from all incoming data
and/or network channels (i.e., channels from which there

is directed edge to r,), and writes to all outgoing data

1) Two interleaved write accesses to a shared channel may
cause it to be in an inconsistent state, since we cannot
predict which write access will be final.

HO{ - KISt - NARIRS! =2X M3 K5& 199710

and/or network channels (i.e., channels to which there is
a directed edge from r,). The actual ordering imposed on

the reads and writes is inferred by the task 1z,'s

structure.

To programmers, all reads and writes on data and
network channels are asynchronous and non-blocking.
These channels can even be considered as unbound
buffers, and they are instantiated with finite blocks of
memory later in a transparent manner. Network
channels abstract the communication between two hosts,
and they are implemented as sets of circular, slotted
buffers, one at the sender’'s host, and one at each
receiver’'s host. Data is transferred from the sender’'s
buffers to the network by a virtual communication task.
On the receiver's side the data retrieved from the
network is directly placed into the appropriate location in
the receiver’s buffers.

Both of the local and network communication schemes
present the same non-blocking communication model to
designers by successfully hiding implementation details of
the communication scheme. Furthermore, it also allows
designers to avoid the complex analysis needed for
blocking communications, and to focus exclusively on the
assignment problem. As we showed in our previous
work in [9], it is the period assignments that aliows for
asynchronous communication by ensuring that no writer
can overtake a reader currently accessing its slot. On the
other hand, unlike in [9], complete asynchrony can not be
achieved since network channels require short locking
between sender tasks and interrupt handlers. However,
such details are still hidden from designers.

3. End-to-End timing constraints

The end-to-end real-time requirements postulate four
different types of constraints as follows: (1) A freshness
constraint F(YIX)=¢, reflects the constraint “If an
output Y is delivered at time ¢ , then the input X used
to compute Y is sampled no earlier than ¢—¢,” (i) A
correlation constraint C(Y1X, X;)=t,, says that “if Y
is delivered at time t, then the X, and X, values used

to compute Y must be sampled within ¢, time of each
other,” (iii) Output jitter constraints Jy=t and Ji=1
reflect the requirement that two successive outputs of Y
must be separated by no less than # and no more than
& time units, and (iv) the output rate constraints
TY=1t and T%=1t, reflect the requirement that output Y
must be delivered at a minimum average rate of once
every ¢ time units, and a maximum average rate of
once every £, time units.
4. A simple example

We present a simple example task graph (shown in
Figure 1). This example ATG will be used throughout
the paper to illustrate the solution process. The example

ATG consists of two external inputs X,;, and X, and
two outputs Y, and Y, There are four tasks in the

system - which collaboratively use the external inputs to
produce external outputs. Each task forms a separate

Journal of Control, Automation and Systems Engineering, Vol. 3, No. 5, October, 1997 545

partition, and we assume that 7; and 75 are mapped to
one host, and 73 and 74 are mapped to the other host.

We impose a minimal set of constraints on the ATG
comprising of minimum rate for the outputs, and
end-to-end freshness bounds on the different
input-output pairs. We find that this minimal constraint
set is sufficient to illustrate the key solution techniques
presented in the paper, as well as being simple enough
to guide the reader through the solution process.
However, we caution the reader that the absence of
output jitter and correlation constraints, as well as more
intricate communication patterns, greatly simplify some
stages of the process - specifically the
assignment of deadlines, offsets, and phases.

solution

F(vjx,) = 64
Froshmoss: F(Yi|X2) = 34
F(Yz|Xz) = B85
Qutput Rate: 11,1;": z :(1‘
Fig. 1. Example ATG structure and the End-

to-End constraints.

II1. Review of the single—processor approach

The distributed extension we present in the sequel is
based on the single-processor approach, hence its brief
review is relevant. In short, the approach attempts to
derive task-specific attributes In a semi-automatic
manner. It accepts an application’'s task graph and
end-to-end timing requirements on the application’s
inputs and outputs. It then translates them into a set of
nonlinear inequalities which possess task-specific
attributes as free variables. It proceeds to solve these
inequalities, while minimizing the application’s CPU
demand. We first define the task-specific attributes and
explain the constraint solving process.
1. Task-specific attributes

Each task in a task graph is a periodic one which is
repetitively invoked and executed at a fixed rate. The
periodic task has three kinds of timing attributes, namely
period, offset and deadline which are denoted by 7, O,
and D, respectively.

There was an important assumption made on task

periods, in [8]. Suppose task 7z, writes into a channel
and task 7, reads from it. Then we call

task and

T, a producer
7, a consumer task. For a given pair of
producer/consumer tasks (r; r;), the approach required
that period 7, be an integral multiple of period T, We
called this harmonicity requirement and denoted it by
“TiT.”. The harmonicity allowed for

significant benefits in task communication and task
scheduling, as shown in [8][9].

requirement

2. Steps of the approach
For a given task graph possessing n
{r), 19,...,7, and the end-to-end requirements oninputs

tasks

and outputs, the approach derived 73, O, and D, in two
steps, as below.

Step 1 It derived a set of nonlinear constraints on
task-specific attributes 7, 0, and D, such that the

derived constraints implied the
constraints.
Step 2 : It solved the derived nonlinear constraints such

that chances of obtaining a schedulable task set were

maximized. We used the following objective functions.
Step 2 involved solving a nonlinear

problem which is conjectured to be an NP-hard problem.

onginal end-to-end

optimization

The primary source of complexity for the problem was
the non-linearity introduced by the
requirements on period variables. Therefore, in order to
tackle this adopted the
approach:

(1) First the entire constraint set was reduced to
constraints involving period values only, using Fourier
method for

harmonicity

complexity, we following

variable elimination linear
constraints.

(2) The constraints on periods were then solved and
optimized for minimum utilization using a combination of

heuristics derived from harmonicity requirements.

(see appendix)

(3) Finally, with the values of 7,'s plugged into the

offsets and
a greedy heuristic of
maximizing the window of execution of tasks.

The primary benefit of the approach was the
decomposition of a complex problem into relatively
tractable sub-problems. In the case above, we got two

oniginal constraint set, a solution for

deadlines was obtained using

simplified sub-problems: one involving period variables,
involving deadline and offset varnables.
Furthermore, each sub-problem had a simpler and better
defined objective function: minimizing utilization for
period assignment, and maximizing execution windows
for deadline and offset assignment.
3. Solution overview of the extended approach

As in [9], our objective is to derive a set of
intermediate constraints €, which when satisfied ensure
that the set of end-to-end constraints & are satisfied as

and one

well. The constraint set C is merely a set of constraints
on the task (including network tasks) attributes (the
periods, deadlines, offsets, and phases). The final result
is a set of periodic tasks, and a set of periodic message
streams, which if found to be schedulable, guarantee that
the end-to-end constraints will be satisfied. The problem
of scheduling of periodic real-time tasks and periodic
real-time message streams is well studied in the
literature, and is not addressed in this paper. Instead, we
concentrate on the derivation of task attributes.

Our solution process is carried out in several steps as
in our single processor solution. We begin with the
derivation of intermediate constraints from the original
end-to-end requirements. Following that, the constraint-
solver is invoked to solve the intermediate constraints,

546

using heuristics to achieve schedulability of the derived
task set. Once the constraint -solver returns a feasible
solution, the channels are implemented by instantiating
the “read” and “write” operations, creating interrupt
handlers for network communication, and estimating the
overheads due to interrupts in the schedulability analysis.
The final result must then be subjected to schedulability
analysis, which we do not address.

1V. Deriving the Intermediate constraints

The first step in our approach is to transform the
constraints into a set of intermediate
constraints on task attributes. In this section, we show
constraints are derived, highlighting the
extensions needed for distributed systems.
1. Constraints due 10 correlation, jitter and rate

requirements

These constraints are handled in essentially the same
Correlation

end-to-end

how these

way as in our uni-processor solution [9].
constraints are handled by creating a special sampler
task responsible for sampling correlated input data. The
satisfied if the window of
execution of the sampler task D,— O, is bounded by the

correlation constraint is

correlation requirement ¢.,. In a distributed system
scenario, the input sensors may be attached to different
hosts. Therefore, we simply keep identical copies of the
sampler task on each such host, running with identical
values of T,,0,,D, and ¢, The output jitter ¢
onstraints arc handled in the same way as for a single
processor, and impose the following constraint on a task
7, delivering external output Y T;+(D;,— O)<]y
T.—(D,—0)=][y‘ The output rate constraints are even
simpler, and simply impose bounds on the period of the
output task 7, as follows: Ti< T,<Ty.
2. Constraints due to communication and

requirements

A crucial aspect of our approach is the communication

freshness

scheme between producer-consumer pairs, and the delay
introduced in transferring data from one task to another.
A producer-consumer pair relationship exists between
two tasks 7, and 71, where r, writes to a data
channel d, and r, reads from d,. Similarly, it also
exists between a task r, and a network task m,, if 7,
writes to channel ¢, and between a network task m,,
and task 7, if 7, reads from c,

In [9], we showed that if the producer and consumer
periods are harmonicallv related, then a consumer can
read fresh and correlated data from its input channels
using virtual sequence numbers. For example, if T
=20 and = 60, T, 7. needs only every third data item
produced by T,. Therefore, 7, produces data items with
sequence numbers 0,1,2,3.4,..., while 7z, simply
reads the data items with sequence numbers 0,3,6, etc.
Therefore, our first step is to add harmonicity constraint
TIT, (T, is exactly divisible by T,), between every
producer-consumer pair (7, r.) in the task graph.

A freshness constraint F(Y1X)= ¢, forms a chain of

producer-consumer pairs. As the data flows through the

NIt - Risst - NAEISS ==2A1 M3 A M52 1997.10

chain, a delay is encountered in the processing involved
at each task, and in transferring data from one task to
another. Furthermore, for smooth flow of data, we must
ensure that a consumer never overtakes a producer—that
is, whenever the consumer task instance is started, the
corresponding producer task instance should have finished
execution. Therefore, a freshness constraint imposes two
types of constraints: one to establish proper precedence
between producer consumer pairs, and another to ensure
that the freshness bound is satisfied over the entire
chain.
2.1. Freshness constraints derivation
solution

Figure 2 illustrates the precedence scheme used
between producer-consumer pairs in our single processor
solution [9]. We note that harmonicity allows us to
restrict attention to only the first instance of the
consumer. As is evident from the figure, proper

precedence is maintained if ¢,=¢, and O.2D, Now,

in single processor

consider a freshness constraint F{Y|X)=1# with task
7, reading the input X , and 7, producing the output Y.

The data path from X to Y forms a chan of
producer-consumer pairs, for which the end-to-end delay
is bounded by D,— 0y, and therefore the freshness
constraint is satisfied if D,— O;<{,.

On a single processor, the scheme can be optimized by
deferring the precedence requirement to the scheduler.
For instance a deadline monotonic scheduler would
ensure precedence if we set O,= O,, and D.=D,. This

brings in the advantage that the consumer is not
artificially forced to wait until after the deadline of the
producer, and also we avoid decomposing the end-to-end
freshness bound into fixed slack for each task in the
chain. This optimization is feasible for consumer tasks
that do not have constraints on offsets (in our scheme,
any task that does not read correlated input data, or
produce output data with jitter constraints).

¢p=¢c

D, <0

Fig. 2. Satisfying Precedence Requirements through
Offsets.

2.2. Extending to distributed systems

When extending to distributed systems, we find that
the above scheme is no longer desirable for freshness
chains spanning multiple processors. The offset based
scheme used for single-processor systems, brings in
strong coupling between the freshness bounds and output
task rates, since all tasks along a data chain must
execute within the period of the output task. This
coupling is undesirable when the freshness bounds are
loose compared to output rate requirements, and may

Journal of Control, Automation and Systems Engineering, Vol. 3, No. 5, October, 1997 547

easily make the system unschedulable. For example,
consider the example ATG presented earlier (Figure 1),
With this scheme, all of 7;,m;, and 73 must execute
within 73’s period, which is no more than 20ms
Clearly, this is wunnecessary, and would make the
constraints trivially unsatisfiable if e+ e+ e,>20, even
though utilization on each processor (including network)
may be well below 1. Note that this coupling is not
harmful on a single processor, since if e+ e+ e;>20, it
implies that the processor utilization is greater than 1,
and therefore the constraints cannot be satisfied.

To decouple the freshness bounds from task periods,
we can explicitly use task phasing (¢’s). This scheme is
illustrated in Figure 3. As is evident from the figure,
precedence is established if ¢,+D,<¢.+ 0, We note
that this is a generalization of the offset scheme, and
degenerates to the offset scheme whenever ¢,=¢,. The
end-to-end delay over a data chain is now given by
(¢,+D,)~(d1+ 0O)).

The introduction of phase attribute to tasks, adds
another set of variables, and hence additional complexity
for the constraint solver. Fortunately, we can reduce the
number of phase variables by realizing that on a single
processor, this
advantage. Therefore, we may set $,=¢., whenever the

generalization presents no significant

producer and consumer are on the same processor,
thereby reducing it to the scheme used in single
processor solution. Furthermore, as in the single
processor case, a further optimization may now be made
by deferring the precedence to the scheduler -~ whenever
it is feasible.

A special note must be made when the consumer is a
network task, and the producer is a computation task.
Recall from our model that network tasks have offset
equal to 0. Furthermore, since each channel has a single
writer, and we use virtual communication tasks to
transfer data from the producer’s buffers to the network,
we may always trigger the virtual communication task at
the deadline of the producer. Thus, we get ¢, = ¢,+ D,.

FptDp S +0,

Fig. 3. Satisfying Precedence Requirements through
Phasing.

Local Freshness Bounds. A freshness constraint
F(Y1X)=t, may well stretch over several partitions
P,...,P,, and network channels c,...,c;_, forming a
data path from system input X to system output Y. Let
I'; denote the chain of tasks on each partition P, and
O(I') denote the offset of first task on the chain, IXTI)
denote the deadline of the last task on the chain, and

#(I') denote the phase of the first task on the chain.
From the preceding discussion, we can derive the

maximum delay along different components as follows:
(1) For each partition P, the maximum delay is given

by IXI')~O(I), (i) for each channel
channel has only one (network) task (m;) , the maximum

(¢;), since the

delay is simply D7, and (iii) the maximum delay in
transferring data from a channel ¢,_, to a partition P,
is given by ((I)+O(I))— (" + D).

The end-to-end freshness constraint is satisfied if the
sum of all the delay components is no more than t,.
in this

significant problems for the constraint solver, since it

However, writing the constraint form poses
merges two distinct sub-problems: (1) decomposition of
end-to-end freshness bounds into a local bound for cach
delay

deadlines to

component, and (2) derivation of offsets and
satisfy the
This
complicates the derivation of deadlines and offsets and
makes it difficult to incorporate suitable schedulability

criteria when doing so. Therefore, we introduce two new

local bounds (and other

constraints). coupling is undesirable as it

variables (termed “freshness” and “delay™ - one for cach
local freshness bound, thereby effectively decoupling the
two sub-problems.

The freshness variables are used to bound the delay
on each partition and channel, and are labeled F 1 Fy,
etc. The delay variables are used to bound the delay in
transferring data between partition and channels, and are

labeled &), 85 etc. The reason for distinguishing them is

simple: the two types of variables have different
interpretation and therefore must be solved usin g
different objective criteria. The freshness variables

involve processing delay from tasks, and therefore must
have values that can accommodate the execution of
tasks. Therefore, consideration must be paid to relative
loads on the processors when assigning a value to them.
On the other hand, delay variables represent pure delay,
and therefore, the same criteria cannot be used.

3. Deriving constraints for example ATG.

We revert our attention back to the example system
presented earlier. We first introduce new varables
F\, Fy, Fy, Fy for the delay on partitions, and F; and Fy
for delay on channels. We also use &, and 8, as two

delay variables. In addition to the intermediate constraints
derived from the end-to-end requirements, we also have
constraints due to execution time requirements, and the
periodic tasking model itself. Therefore, for each task we
have : D~ 0,;ze; 0,20, and D,<T. Before the cons-
traints are presented to the constraint solver, many
simplifications may be made as noted below. The final
set of constraints given in Table 1 reflects the constraint
set after the simplifications.

(1) Since each channel has a single sender, we can
simply set the period of a network task to its
corresponding producer. Therefore, we get 7= T,, and
T3 =T,. Likewise, we can set the phase of a network
task to coincide with the deadline of the sender, and
therefore we can set ¢"=¢,+ Dy, and ¢5'= ¢,+ D,.

548

(2) Since there are no input correlation or output jitter
constraints, we do not need task offsets; therefore, we
can simply set 0;= 0,= 0y= 0;=0.

(3) For each of the tasks which read external input,
we can simply set the phase to 0; therefore we get
¢ = $.=0.

(4) We can also establish the phase of task zy, since
it is only dependent on the network task ms: and thus
we get ¢, =¢y+DV= ¢+ Dy+DJ= D,+ Dy

(5) Since we know that on each partition (or channel)
the maximum delay is bounded by the output task’'s
period, we add the constraints: F\< Ty,
FosT) Fy<Ty, F\<T,F;<T" and Fy<TY. These
constraints are helpful in the derivation of local freshness
bounds.

following

Table 1. Intermediate constraints for example ATG.

Harmonicity TATV, T\ T, T\ T, TV =T,, Ty'=T,

Precedence =D+ DY, ¢y2 Dy + DY

End-to-tnd Fi+F+ 8 +F,<64 F,+ Fy+ 8+ Fy<b4,

Freshness Fi+ Fy+ F <8

D\<Fy, D.<F., Di<F,,D\<F|, D{'<F;, DV<Fy,
¢y D — DV'<8, ¢y— Dy — DV,

<7, Fos Ty Fs< T, B\ <T |, F;< T, F,< TV
Rate T,<20, T,<71

Local Freshness,

and Delay

Execution 7<D),8<D,,6<D,,21<D,,7<D",9< Dy

V. Constraint solver
Once we have expressed the end-to-end constraints
as a svstem of intermediate constraints, the constraint
invoked to for the
and phases, as well as
variables.

solver is generate instantiations

periods, deadlines, offsets,

and delay Clearly, any solution

that satisfies the intermediate

freshness
constraints preserves
that is if the final task set is schedulable
satisfied. The

notions of

correctness -
then end to-end constraints will be

constraint solver must also incorporate

schedulability in generating the solutions to avoid
generating trivially unschedulable solutions. Therefore, we
solve the constraints using objective functions which
capture the notion of schedulability.
We highlight the problems faced in extending the
solution for distributed systems, and then present the
new results.
1. Extending the constraint solver for distributed systems
Additional complexity is introduced into the constraint
solving process, as we move from a single processor
svstem to a distributed svstem. The added complexity
arises from several sources:
® ['nd-to-End Freshness: A major source of additional
complexity arises from~ end-to-end freshness
requirements, which resulted in the introduction of new
variables. In order to solve for these new variables, we
must define and sub-problems, and

integrate them into the overall scheme.

solve additional

® Schedulabilitv: Incorporating schedulability notions in
the constraint solving process for a distributed system
harder than for a single

environment is significantly

MO - XiS8t - A2EISS =2A1 M3 W 5% 1997. 10

processor system. To ensure schedulability of the entire
system, we have to ensure that proper load balancing is
achieved, not only at the macro level of overall
utilization, but also on the micro level of individual
deadlines.
® Sizel In a complex distributed system, the number of
tasks (and therefore, the number of vanables and
constraints) can be quite large. The constraint solver
must scale well to the increased complexity due to size.
In extending the solution, we build upon the solution
for single processor systems, retaining the essential
structure of the approach. We recall that the freshness
variables were introduced to avoid coupling between task
vaniables on each host. Therefore, our first intuition was
to solve for bounds first, and then
proceed with solving the constraints for each processor

local-freshness

in much the same way as the single processor case.
However, we soon realized that this approach was not
very effective due to two factors: (i) in the absence of
any knowledge about load on each processor?, no good
objective function could be determined for solving for
freshness bounds that would capture the notion of
schedulability on each processor: and (i) the values of
freshness bounds may easily result in a null feasible
space for periods due to non-linear harmonicty
constraints. Therefore, as in the single processor solution,
we had to go back to addressing the period-assignment
problem first. Once, the periods are known, the freshness
bounds may be derived, utilizing the knowledge about
relative load on each processor. Once the local freshness
bounds are determined, we can solve for the deadlines
and offsets, maximizing the window of execution for
each task, and finally determine a feasible phasing for
each of the tasks. The overall approach is outlined
below:

1) The first sub-problem that we solve is the period
assignment. As In our single-processor case, we first
reduce the constraint set to one involving periods only
using Fourler variable elimination. However, unlike the
single we do not mimmize overall
utilization: instead we assume that maximum utilization
bounds are known for each processor. The utilization
bounds may bhe viewed as estimates of available
utilization for this ATG on a given processor. Any
solution that satisfies these bounds is accepted.

Processor case,

2) Once the periods are known, we proceed to solve
the sub-problem of decomposing end-to-end freshness
bounds into local freshness bounds. Variable elimination
is again used to restrict attention to freshness variables.
The schedulability notions are captured in the objective
function by making use of information about utilization of
each task, each processor, and the available utilization on
each processor.

3) Once the periods and the freshness bounds are
found, we are still left with a system of constraints

2) We use the term processor to indicate both CPU and
network resources.

Journal of Control, Automation and Systems Engineering, Vol. 3, No. 5, October, 1997 549

involving deadlines, offsets, and phases for the tasks.
These constraints largely involve variables on a single
partition, but some interdependencies may arise due to
network communication. We first solve for offsets and
deadlines, with the objective of maximizing the window
of execution of each task, just as in our single processor
solution. However, each processor is handled in a serial
manner due to the interdependencies. In order to
maximize schedulability, the ordering is determined by
the utilization available, and the actual utilization of the
task set on each processor.

4) Finally, feasible task phasings are determined by
traversing the task graph in a topological sort order, and
minimizing the phase of each task.

In the remaining part of this section, we delve into the
extensions needed in the constraint solver, specifically in
determining local freshness bounds.

2. Period assignment

The extensions to period-assignment are straight—
forward, and therefore we simply illustrate the algorithm
on the example ATG. The constraints that we derive
after eliminating non-period variables are given below:

TP="T, Ty=T, TIT" TyTy TITY
T{'=1, T¥=29, Tiz5, T.28, 6<Ty<),
A< T,<71

We assume that the maximum utilizations are given

as:
U™ =0.95 U;™ =0.90 Uy =0.82

From the harmonicity requirements, it follows that
T,=T'=GCITy)=Ty, and T,=T3=GCIXTy, T).
Therefore, a feasible solution (in fact the only one) that
satisfies the utilization bounds 1s 74y=20, T,=60, and
T\=T=T,=T;=20.
3. Deriving local freshness bounds

The constraints for this sub-problem are obtained by
instantiating the period values, and projecting the
constraint set onto the sub-space of freshness variables.
Let F,,Fy,...F, be the
freshness bound for a chain of tasks on some data path,
allocated

includes a lower bound on each F, (denoted as F.), an

variables denoting local

to a single processor. The constraint set

upper bound on each F, (denoted as F7), and a set C
of end-to-end freshness constraints. The lower bounds
arise from execution time requirements, while the upper
bounds arise from the task periods3). Reverting back to
the example, we get the following end-to-end cons-
traints:

Fy+ Fs+ Fy<64, F,+ Fg+ Fy<bH4,

Fo+ Fs+ F,<85

Note that at this stage the delay variables &,’s have

been eliminated as well. In addition the lower bounds are
given as!

Fi=5 F,=8,Fi=6, Fi=21,Fi=7,F;=9, while thc

3) Recall that on each processor, the freshness bound is
limited by the output task’s period.

upper bounds are given as: F{=F{= F{=
and Fi=60.

The main challenge in the problem arises
addressing notions of schedulability. Therefore, our first
step 15 to define an appropriate cost function
o F\,Fy, ..., F,), which when minimized, maximizes the

“— FE =20,

from

schedulability across the distributed system.
Deriving a Cost Function. Let pA{F,) be some cost
function that captures schedulability of the chain of tasks
I', represented by F,. Recall that F, denotes a bound
on the total time available to execute the tasks in I,
Therefore as F, is increased, the schedulability increases
for tasks in I, Hence, p{F,;) must be a function that
decreases as F, increases., Unfortunately, while
increasing F, may increase the schedulability of the
chain; it may actually decrease the schedulability of the
entire systemn by over constraining another chain
represented by a vanable F,. Since the overall system
is schedulable if and only if each of its components is
schedulable, the overall cost is best captured as follows:
o(F(, Fy,....F,) = max,o(F,)

with the schedulability maximized when o i1s minimized.
We are still left with the problem of defining each p,.
take

schedulability notion. Recall that each F, represents

The approach that we directly addresses the
a bound on the difference between the deadline of the
last task of the chain, and the offset of the first task of
the chain. In other words, it presents a bound on the
chain of tasks.
Therefore, in addressing schedulability, we must tie the

maximum “response time” for the

value of F, to the response time of the chain. Let us
assume that for each F, we have an estimate of the
response time (given as R, for the chain of tasks T,
that it represents. The expected response time would lie
somewhere in the range [F., F¥]. If we set F,=R,
for all varables, and assuming that the estimated
response times are accurate, then all chains of tasks will
exactly satisfy their local delay bound. We postulate a
cost function given as o(F,;)= R;/F, which achieves a
value of 1 for F;=R, The cost function o may be
viewed as the normalized speed of the processor at
which the expected response time equals the value of
F,. For instance, when F;= R,/2, then the expected
response time would equal F, on a processor that is
twice as fast, (p=2). Likewise, when F,=3R, a
processor that is three times as slow (o=1/3) would
result in making the expected response time equal to F',.
Estimating Response Times.

Consider a single

processor with the set of tasks 7, 19, ..., T, allocated
on that processor from the ATG. The utilization of each
task 7, is known at this time, and given by e;/ T, Let
U be the sum of the utilization for all the tasks, and lct
U™ denote the utilization available for the tasks. The
response times are estimated conservatively assuming an
idealized processor sharing scheduling discipline, in which

each task is given a fraction of the processor at each

550

time instant. Thus, a task with a fraction f (0< f<1)
of the processor can be thought of running alone on a
processor which is 1/7 times slower. Therefore, if e is
e/} time
to complete the task, which we estimate as its response
time.

the normal execution time of the task, it takes

U™ gives the fraction of the
processor available to the entire ATG. Dividing this

In our scheme,

amount proportionately among all tasks, the fraction
available to task r, is given as:
U.
f1'= 7l* Umax
and the response time of task z, is given as e,/f,. The
response time of a chain of tasks, is now simply

estimated as the sum of response time of the tasks in
the chain.

Solving the Constraints to Minimize Cost. The price
good objective function is the
introduction of non-linearity, and therefore the constraints
longer by

that we pay for a
solved using linear programming
methods. Fortunately, the nature of the constraint set, and
the objective function lend to a simple algorithm that
minimizes the overall cost, which is presented in Figure 4.
The algorithm begins by transformung the original
C by
with R;/p, The new constraint set
0, which directly reflect the cost.
objective function is to simply

can no

end-to-end constraints substituting each F,
C has variables

Therefore, the
minimize max ;Q,.
We also establish lower and upper bounds on each p,
o!=R/F* and o¥=R;/F.. We first

check if C is satisfiable when o;= p¢ for each i, since

as follows:

if it is not then no solution exists and we can terminate.
On the other hand, if C is satisfiable when 0i=0.
we can also terminate since this is the best possible
solution, with a cost of max ;0. In general, an optimal
solution occurs when each p, takes some value in the
range [0, 0¥]. Clearly, the optimal cost lies in the
interval [max ;0', max ;0.

To find an optimal solution, we rely on the following
fact: If the optimal cost o is less than min,(p}), then
an optimal solution is simply ©;= 0", and may be
obtained by substituting each p, with a new vanable o,
and then minimizing the value of p. A complication
arises when the optimal cost is greater than min (/).
In this
o,= min(p?, p"). The two cases can be combined by

case, an optimal solution 1is given by:

ignoring the upper-bounds on ©, when finding the
smallest value of o that satisfies the constraints. If the
value so obtained is no more than min,(p}), then we
have an optimal solution. On the other hand, if the value
so obtained is greater than min;(pY) then some of the
upper bounds are violated. For each of these p,’s, the
optimal value is simply oY. We can now substitute

these values into the constraints and repeat the procedure

RO - A=} - ANAEIBS =2K] M3 A HM5F 1997. 10
until done.
A further optimization may be done when

o <min ;{p¥). While the overall cost may not be
reduced any further, the values of individual p,’s may
still be reduced. This is true for any p, that is not in a
that would be
p, was reduced any further), when all
substituted by o

constraint that is saturated, we establish the value of

saturated constraint (i.e., constraints
violated if any
each

o,'s are Therefore, for

each variable in it as p", and substitute these values in
the constraint set. The remaining constraint set with a
reduced set of variables may now be solved again using
the same procedure.

The algorithm presented in Figure 4 implements the
above ideas. When the algorithm terminates, the optimal
cost for each F, is given by p, from which F, is

simply obtained as F;,= R,/p,

Algorithm Freshness-Bound Decomposition Input:
F. set of variables F, F,, ... F,, ¥ set of variables
£1,02, -4 Oy

C.: set of constraints p;2p!, C,: set of constraints p,<p.
C: set of end-to-end freshness constraints.

1 if not consistent (CI[V i:0/0¥]) then return fail;

if consistent (C[Vip/ell) then Vi o;: =0

success.

bt

, return

3. Let C= ClVipdolu ClViipdel, and

4. Let 0" be the minimum value of o that satisfies C.

5. if ¢"> min(p!) then

6. foreach i do

7. if "> 0" then

3. p;=p Fi=Rjo,

9, C:=TClpi/p!);¥:=¥~p,;

10. else

11 Let C be the set of inequalities in C that are
“just satisfied" at po=p".

12. foreach x in C'’ do

13. foreach variable p, in x do

14. o;i=p";F:=Rj/o" :

15. C:=t[p;/ﬂ'];¢::‘F*p, ;

16. endif

17. if not Nil ¥ then goto 3.

Fig. 4. Decomposition of End-to-End freshness

bounds.

Deriving Freshness Bounds for Example ATG. The
first step is to derive the estimated response times, and
the following values are obtained.

R, R, R, R, Rs Rs

1368 13.68 1444 43.33 19.51 19.51

From the bounds on F, we obtain the lower and
upper bounds on p, as follows:

Journal of Control, Automation and Systems Engineering, Vol 3, No. 5, October, 1997 551

01 02 3 04 05 Op

0, 068 | 068 | 072 072 | 097 | 097

of 274 1.71 2.41 2.06 2778 2.17

L

The optimal solution is found as follows:

1. In the first round, the minimal value of p is found
to be 097 which is larger than min p;=1.71.

Therefore, p*= 097. The cost cannot be reduced
any further since pé=0é=0.97. Thus, we obtain
Fs=F¢=20, and continue to reduce p, for other
chains. The reduced end-to-end constraints are now:

F1+F3£44, F2+F3S34, and F2+F4S65
2. In the second round, the minimal value of o© is
found to be 087, below which the constraint

F,+ F(<65 becomes violated. Therefore, we set
F,=15 and F;=494, and simplify
to Fy+ F3<44, and F3<19.

3. In the third round, F3<19 is saturated, and we set
F3;=19. Finally, we set F;=20.

The final solution for freshness bounds is given below:

the constraints

F F, F3 Fy Fs Fy

20 15 19 49 20 20

Solving for Delay Variables: After the values of
freshness variables have been determined, we are still
left with delay variables. The previous algorithm
distributes the end-to—end delay bounds as much as
possible for each partition and channel. Therefore, any
slack left may be given to the delay variables. We now
have the following constraints’ 0<§,<5 and 0<§,<0.
Therefore, we give a value of 0 to &, and 5 to 4.

4. Deriving offsets and deadlines and phase

The last stage of our constraint solving process is the
derivation of task deadlines, offsets, and phases. The
objective here is to maximize the window of execution of
each task. In our single processor solution, we presented
a simple greedy approach which achieved this by
maximizing the deadlines and minimizing the offsets, one
at a time. However, a greedy approach like this is not
entirely satisfactory, since maximizing one deadline may
over—-constrain another one. Here we sketch a similar,
but slightly improved algorithm, which combines the
greedy ideas used for freshness
bounds.

1) We solve the constraints by focusing on the
variables of one partition at a time. Again, we use
variable elimination to restrict the constraint set to
variables of a single partition. For choosing the order of
partition, we define the relative load of a processor as

approach with the

4) We restrict the solution to integers, and therefore take
the floor of the actual value.

U™, utilization of the
tasks belonging to the processor, and U™
utilization bound on the processor. We then visit the
variables of the partitions in the decreasing order of the
relative load, the idea being that a processor with high
relative load has the least amount of slack, and therefore,
the windows of tasks residing on that processor must be

where U is the total

1$ the

optimized first.

2) For each partition, we begin with minimizing the
offset of the input tasks, one by one. Most often, the
offset of mnput tasks is used only for
and there 1is little benefit
non-zero offset.

3} The input offsets, once determined give us the
starting points for windows of all tasks, except perhaps

correlation

constraints, in having a

the output tasks {see the discussion on precedence duce

to freshness requirements). Therefore, we proceed to
maximize the deadlines. Note that the problem here is
very similar to the problem of finding freshness hounds,
and we use the same approach based on estimated
response times. Once the deadlines have been determined,
the end-points of all offsets are known, and we solve for
the offsets of the output tasks.

4) After all offset and deadline variables are solved,
for all the partitions, we simply minimize the phase
variables - one at a time.

Revisiting our example, we find that the relative loads
are given by: 0684, 0.722 for the two hosts, and 0.975

for the network. Therefore, we start with the network,
and solve for Dy", and D" In this case, the solution is
trivial and we set D{'=Dy=20. We then move on to
host 2, with variables Dj; and D,. Again, the optimal
values of these two are easily found to be D;=19 and
D;=49. The remaining constraints are now given as:
D<20, Dy<15, 5Dy, 8<D,, D:<D,, D;<D,+5

The first two constraints are simply the upper bounds
on the deadlines arising from the local freshness bounds.
Likewise, the next two constraints are simply the lower
bounds from the execution time requirements. The final
two constraint arise from the interactions of the two data
Y. Recall

0, and &y, and found
respectively.

chains from inputs X; and X, to output

that we have earlier solved for
of 5 and 0
constraints, we obtain the largest values of D, and D,

values From the above

as 15 and 20 respectively. Finally, we solve for ¢, and
find that its minimal (in fact the only value) is 35. The
final solution is given below:

T| ¢ o\ D T | ¢ o| D

T | 20 0 0 15) o) 20 0 0 |20

| 20| 15] 0 20 13| 20120 0 |20

rp | 20 | 35 0 19 { o | 60 | 40 0 | 49

552

V1. Buffer allocation

Non-blocking accesses to channels lies at the heart of
our resource management scheme. In [9] we present a
solution to data channel implementation in which we
start with an unlimited buffer assumption, and then
bound the size of the end result. Unfortunately, where
hardware limitations are present, such a straightforward
solution may fail to achieve the desired asynchrony. In
this section, we show how network channels can be
implemented, using a specific network controller for
Controller Area Network (CAN) described in [21]. We
first review the data channel management from our
original single processor solution, and then present the
network channel management.
1. Data channel management

The most pressing requirement in channel management
is to ensure that a consumer task always sees fresh and
correlated data data channels of its
producers. The harmonicity requirement greatly helps us

items in the

meet the requirement, since we can consider only one
period of the consumer, as shown in [9].

Let 7, and 7, denote a producer and its consumers,
respectively. Due to enforcement of harmonicity on a

data chain, 7. only reads a data item that was

generated within its current period. Thus, so long as t,
T‘ ~
7., Te Can
always find a correct data item. This is true for all

keeps at least n, data items where #n,=
consumers of d. Therefore, the size s of d is chosen as
the maximum of #,. Once a value is picked for s, the
next data item can be found using the following index
operation.

index ;= (index;+ n,) mod s
where index, 1s initially set 0 for all i.
2. Network channel management

The reason for choosing CAN network is that it

provides several benefits: First, it provides for a
broadcast bus, which is desirable to implement multiple
readers in an ATG. Second, it allows for simple

mechanical arbitration solely relving on static priority
scheme: this in turn enables us to use a relatively simple
schedulability test, which has the same theoretical basis
as a class of processor schedulability analyses discussed
in [20]. Thus, uniform treatment between processor and
network scheduling 1s possible.

As in [21], we consider Intel 82527 network controller
as a network interface between a host CPU and a CAN
bus. It scems appropriate to assume a specific controller,
different different types of
which may systemm calibration

controllers have
affect the

since
limitations
process of our approach.

For example, the Intel 82527 controller has only 15
slots for incoming and outgoing messages, while an ideal
network controller for CAN would give 2048 slots® for

MOt - AISS - AXEIES =241 N33 M5& 199710

messages so that a message to be sent can be simply
put into a slot corresponding to the message identifier.
This invalidates the unbounded channel size assumption
and leads to task blocking, since a task has to wait
before it writes a message into a slot until the other
in the slot is transmitted. To avoid such

blocking, we either ensure that a slot is always emptied

message

before next write, or provide secondary buffer spaces so
that messages are temporarily kept. Since the former
approach requires global scheduling of both the network
and host processors, we choose the latter approach.
Before we proceed, we make the following assumptions:
(1) Message identifiers are pre-determined when an ATG
is built such that each network channel has a unique
identifier across the ATG, (2) Slots in Intel 82527 are
programmed to either receive, or send messages; and (3)
Each message is mapped into a unique slot in a transmit
host and in each of receive hosts, as described in [21].
We use an interrupt-based handshaking implementation
in which each slot is independently programmed to
generate an interrupt upon either receiving or sending a
key component of the approach is a
priority-ordered queue created for, and
associated with each slot used for transmission. The

message. The
which is

details of transmit slot implementation are itemized as
follows.

e For each transmit slot, we create a priority-ordered
queue in the transmit station.

e When a task attempts to write a message into a
corresponding slot, it checks if the slot is empty. If so, it
directly writes the message into the dual-ported slot;
otherwise, it puts the message into the corresponding
prionty-ordered queue. As the priority-ordered queue
may be written by multiple tasks and read by an
interrupt handler, accesses to the queue are protected by
mutual exclusion.

e When a message is sent to the network, an interrupt
is issued and then a handler is dispatched. The handler
moves a message at the top of the corresponding
priority-ordered queue into the slot.

For the purpose of scheduling, we need to compute the
maximum interference that a task can get due to
interrupts raised to move messages from the
priority-ordered queue to the corresponding slot. Suppose
that a host has k transmit channels. Since each channel
has its own message identifier, we have a message set
M= {m, my, ..., m,} for the host.

The maximum number of transmit interrupts (I,) task
7, running on the node can see is:

D;
=2 T 14D

Thus the maximum interference from these interrupts
is simply: ¢=1;-t™ where t;, be the maximum
transmit interrupt handling latency.

3) In reality, CAN allows for only 2032 message identifiers.

6) Note that the deadline of a task or a message is no
greater than the period in the derived constraints.

Journal of Contral, Automation and Systems Engineering, Vol. 3, No. 5, October, 1997 553

The receive channel implementation is similar and is
summarized below:
e Tor each message identifier mapped into a receive
slot, create a FIFO queue in the receive host.
® When a message is delivered into a receive slot
the network, an interrupt is issued and an
associated handler is dispatched.
o The interrupt handler moves the message into the
corresponding FIFO queue.

We can compute the receive interrupt interference in
exactly the same way. Let M= {m, my,...,m;} be a

from

set of messages that a host receives from the network.
The maximum number of interrupts (denoted I,) that

task 7, on the host can get is:

I,= Z:l(f

Virtual Communication Tasks. As mentioned earlier,
there exist virtual tasks to
messages from sender tasks to their corresponding slots
(or priority -ordered queues). We implement such tasks as
interrupt handlers called at the
deadlines of sender tasks, interrupt—based
implementation of virtual communication task results in
shorter switching latency than task-based
Here, we account for the interference of

D;
+
T;‘”] 1) .

communication move

call-out which are

since

context
implementation.
such interrupts.

Suppose that a host has n running tasks,
which &

{r), 1o, ..

among
network messages. Let

tasks. The

number of interrupts (denoted [,) that a task 7z, on the

1,r=f1(—%1.

=1

tasks generate

.,Tx} denote those maximum

host can get is!

VII. Conclusion

We have presented a resource conscious methodology
for desigmng distributed real-time systems as an
extension of our original approach for single processor
systems [8][9]. This methodology
programmers to streamline the end-to-end design of
real-time systems by way of semi-automatic tool-based
approach. We believe that a tool developed using the
ideas developed in the paper will be very useful for rapid
prototyping of designs, and in identifying and eliminating
bottlenecks.

The solution presented in this paper uses the overall
structure and principles of the single processor solution.
However, the complexity inherent in distributed real-time
systems resulted in significant extensions to the single
processor case. The overall approach may be viewed in
several stages. First the end-to-end constraints are
mapped to a set of intermediate constraints on task
attributes. The intermediate constraints are then solved
using heuristics to achieve schedulability. The constraint
solver itself works in many stages -
well-specified sub-problem at each stage.

real-time enables

solving a
This

decomposition of the constraint solver helps in managing
its complexity, and allows it to scale to large systems.
Furthermore, it is also helpful in tuning each set of
variables according to different objective criteria, as well
as identifying potential bottlenecks in the system. Finally,
once the task attributes are determined by the constraint
solver, we automatically synthesize the data and network
channels, and account for their memory requirements and
interrupt overheads.

There exist many directions along which our approach
can be extended. The most pressing demand on this
methodology is validating the approach through applying
it to real system development. Since this in turn requires
the implementation of a tool, we are closely working

with the TimeWare project group at University of
Marvland in developing a tool for the approach. A
preliminary version of the tool has already been

developed for single processor environments. We hope
that the tool will
applications, and help tune and extend the approach. We

help us 1in addressing realistic
are also Investigating extensions of our approach for
multimedia applications, which need more flexible (and

perhaps) blocking buffer management.

References
f[11 N. Audslev, A. Burns, M. Richardson and A.
Wellings. “Data consistency in hard real-time
systems,” Technical Report YCS 203 (1993),

Department of Computer Science, University of
York, England, June, 1993.
[2] R. Bettati and J. W.-S. Lin,

scheduling to deadlines in

“Iind-to-end
distributed
systems,” Proceedings of IEEE Conference on
Distributed Computing Systems, pp. 452-459, 1992,

(31 A. Bums, “Preemptive priority hased scheduling:

meet

An appropriate engineering approach,” In S. Son,
editor, Principles of Real-Time Svystems. Prentice
Hall, 1994.

[41 B. Chen, G and W. Zhao,

synchronous capacity allocation for hard real-time

Agrawal “Optimal

communicatins with the timed token protocol,”

of IEEE Real-Time
Symposium, pp. 198-207, December, 1992.

Bl G
elimination and its dual,” Journal of Combinatorial
Theory (A), 14:288-297, 1973.

[6] D. Ferrari and D. C. Verma, “Scheme for real-time

Proceedings Svstems

Dantzig and B. Eaves, “Fourier-Motzkin

channel establishment in wide—area networks,”
IEEE Journal on Selected Areas
unications, 8(3):368-379, 1990.

[71 J. Garcia and M. G. Harbour, “Optimized priority
assignment for tasks and messages in distributed
hard real-time system,” Proceedings of IEEE
Workshop on Parallel and Distributed Real-Time
Systems, 1995.

[8] R. Gerber, S. Hong and M. Saksena, “Guaranteeing

in Comm-

554

(9]

[13]

[14]

[16]

(171

end-to-end timing constraints by calibrating
intermediate processes,” Proceedings of IEEE
Real-Time Systems Symposium, pp. 192-203.

IEEE Computer Society Press, December, 1994

R. Gerber, S. Hong and M. Saksena, "Guar-
anteeing real-time requirements with resource-
based calibration of periodic processes,” IEEE

Transactions on Softpware Engineering, 21(7), July,
1995.

. Gomaa, “A software design method for
real-time systems,” Communication of the ACM,
8(2):938-949, September, 1984,

J. Sun, J. Liu and R. DBettati, “An end-to-end
approach to scheduling periodic tasks with shared
resources in multiprocessor systems,” Technical
report, Department of Computer Science,
University of lllinois, 1994, Unpublished Report.

D. D. Kandlur, K. G. Shin and D.

“Real-Time communication in multi-hop networks,”

Ferrari,

Proceedings of IEEE Conference on Distributed
Computing Systems, pp. 300-307, May, 1991,
J. Lehoczky, L. Sha and Y. “The
monotonic scheduling algorithm: Exact characteri-

Ding. rate
zation and average case behavior,” Proceedings of
IEEE
166-171, IEFEE Computer Society Press, December,
1989,

C. Liu and]J. Lavland, “Scheduling algorithm for
multiprogramming in a hard real-time envir-
onment,” Journal of the ACM, 20(1):46-61, January,
1973.

S. Mukherjee, D. Saha, M. Saksena and S. K.
Tripathi, “A Bandwidth allocation scheme for time

Real-Time Systems Svmposium, pp.

constrained message transmission on a slotted ring
LLAN," Proceedings of IEEE Real-Time Systems
Svmposium, December, 1993.

M. i Natale and J. Stankovic, “Dynamic end-to-
end guarantees in distributed real-time systems,”
Proceedings of IEEE Real-Time Systems Sym-
posium, pp. 216-227, 1994.

K. Ramamrtham and J. A. Stankovic, “Scheduling
support for

and operating

of real-time systems,” Proceedings of the IEEE,

algorithms systems

e Md 5

1963 10 1194, 198611 A& ot
Axeaets &9, 19889 Bojere A
A}, 1994\ Unitersity of Maryland at
College Park, Dept. of Computer
Science BFAR 19831 29 ~ 19894 7
U S AE NS A4 1994

~ 199541 3% Fuculty Research Associate (Univ.

(19]

KO - K=t - AIMEBS =2 M3 A M58 199710

82(1):55-67, January, 1994.

D. Saha, M. Saksena, S. Mukherjee and S. K.
Tripathi, “On Guaranteed Delivery of Time—Critical
Mgssages in DQDB,” of IEEE
Infocomm, June, 1994.

[18]

Proceedings

L. Sha and S. S. Sathaye, “A systematic approach
to designing distributed real-time systems,” IEEE
Computer, 26(9):68-78, September, 1993.

K. Tindell, A. Bums and A. Wellings, “An
extendible approach for analysing fixed priority

(20]

hard real-time tasks,” The Journal of Real-Time
Systems, 6(2):133-152, March 1994.

K. Tindell, and A. Wellings,
“Analysing real-time communications:

(211 H. Hansson
Controller
of I[EEE
Real-Time Systems Symposium, December, 1994.
K. W. Tindel, A. Bums and A.] Wellings,
“Guaranteeing hard real time end-to—end communi-
cations deadlines,” Technical Report RTSRG/91/107,
of York, Department
Science, December, 1991.

S. H. Hong, “Scheduling
sampling times in the integrated communcation and

area network (can),” Proceedings

[22]

University of Computer

[23] algorithm of data
control systems,” [EEE Transactions on Control
Systems Technologies, 3(2):225-230, June, 1995.

Appendix A. Fourier variable elimination
Fourier variable elimination [5] works on system of
linear constraints, and may be viewed geometrically as
the projection of an n-dimensional polytope (described by
the constraints) onto its lower-dimension shadow. The
procedure is best illustrated through an
Consider the constraints on variable ¢; in our example

ATG, which are given below:

D+ D" < ¢, ¢3 < Di+D"+ 6
D, + Dy < ¢y ¢y < D+ D3+ 5,y
This constraint set is solvable only if the following
are satisfied:
0 < ¢4 D+ D" £ Dy+ D7+ 6,
0 < & D,+Dy < D+ D"+ 6
This new set of constraints eliminates ¢; by simply

example.

combining each lower-bound, with each upper—bound.

of Maryland). 19951 49 ~ 199511 89 Member of Tech-
nical Staff Silicon Graphics Inc. @2} A&istw FHd)st
M7 2a A EokE AAYF Al2E Balxo] A

28, REE] AX U, euelold Aad 5

