
JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.16, NO.6, DECEMBER, 2016 ISSN(Print)  1598-1657 
https://doi.org/10.5573/JSTS.2016.16.6.771 ISSN(Online) 2233-4866  

Manuscript received Jan. 24, 2016; accepted Nov. 1, 2016 
Department of Computer Science and Engineering, Sogang University, 
Seoul 04107, Korea 
E-mail : pci123@sogang.ac.kr 

 
 

Extracting the K-most Critical Paths in Multi-corner 
Multi-mode for Fast Static Timing Analysis     

 
Deok-Keun Oh, Myeoung-Woo Jin, and Ju-Ho Kim   

 
 
 
 

Abstract—Detecting a set of longest paths is one of the 
crucial steps in static timing analysis and optimization. 
Recently, the process variation during manufacturing 
affects performance of the circuit design due to 
nanometer feature size. Measuring the performance 
of a circuit prior to its fabrication requires a 
considerable amount of computation time because it 
requires multi-corner and multi-mode analysis with 
process variations. An efficient algorithm of detecting 
the K-most critical paths in multi-corner multi-mode 
static timing analysis (MCMM STA) is proposed in 
this paper. The ISCAS’85 benchmark suite using a 
32 nm technology is applied to verify the proposed 
method. The proposed K-most critical paths detection 
method reduces about 25% of computation time on 
average.    
 
Index Terms—Process variation, critical path, static 
timing analysis, path pruning, MCMM   

I. INTRODUCTION 

Due to the rapid progress in circuit design technology, 
the complexity of a digital system and its size have 
increased dramatically. Thus, timing analysis and 
verification play an important role to satisfy the given 
timing constraint. The maximum operation speed of 
digital integrated circuit is determined by the slowest 
path that is so called the critical path. Detecting and 
identifying a set of critical paths are crucial steps in 

timing analysis and optimization. There exist many 
techniques [1-4] of extracting critical paths followed by 
delay analysis of digital circuits. The depth-first search 
and breadth-first search [1] are two major critical path 
search algorithms. An efficient algorithm of detecting K-
most critical paths was proposed in [6] and the benefit 
comes from pruning unnecessary searches. Applying the 
above search algorithms to recent circuit design suffers 
from path explosion problem due to large circuit size and 
multi-corner multi-mode (MCMM) analysis. In the 
proposed method, modification and improvement are 
made to the existing K-most critical paths algorithm [5] 
for efficient timing analysis. 

As complementary metal-oxide semiconductor 
(CMOS) technology has been scaled down to the 
nanometer range, process variations of device parameters 
have great impact on circuit performance. Taking process 
variations into account in timing analysis requires more 
computational effort. Multi-corner multi-mode static 
timing analysis (MCMM STA) is another variation-
aware approach to timing analysis that can serve as a 
compromise between traditional STA [7] and statistical 
static timing analysis (SSTA) [8]. In timing analysis, 
MCMM STA is very efficient in a sense that it 
propagates only minimum and maximum delay values. 
MCMM STA can simultaneously analyze a circuit’s 
performance at various modes and corners while 
considering process variations. 

The remainder of the paper is organized as follows. 
Section II describes the basic concept of K-most critical 
path search algorithm and multi-corner multi-mode static 
timing analysis. Modified K-most critical path detection 
method using MCMM STA is presented in Section III. 
Section IV presents the experimental results. Finally, 
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concluding remarks are given in Section V. 

II. BACKGROUND 

Performance has been one of the major design 
constraints along with area and power. Timing analysis 
can be performed at various design stages to meet the 
timing constraint. In this section, we briefly describe K-
most critical path algorithm [5] and basics of multi-
corner multi-mode static timing analysis. 

 
1. K-Most Critical Paths Algorithm 

 
The well-known critical path search methods include 

the breadth-first search, depth-first search, and the PERT 
method [9]. The critical path search algorithms normally 
report only the critical path to the designer and it fails to 
give sufficient information for correcting the timing 
violations. 

Based on either a breadth-first search or depth-first 
search, path enumeration algorithms have been proposed 
in [6, 7]. Although these algorithms provide more 
information than the critical path algorithms, they suffer 
from the path explosion problem. 

The K-most critical path algorithm [5] is proposed to 
generate the K longest paths for a given acyclic directed 
graph. It is an efficient approach to find a set of long 
paths [12]. The pseudo code of the algorithm [5] is 
summarized in Fig. 1. The algorithm consists of four 
phase: creating the source and sink node, computing the 
maximum delay to sink, sorting the successors of each 
vertex, and finally K longest path enumeration. 

In the first phase, a source node s and a sink node t are 
added to the graph for the purpose of easy handling and 
simplifying the boundary conditions. A dummy edge is 
added from node s to each of the starting vertices and 
from each of the ending vertices to the node t. Then, the 
longest path of the graph with multiple primary inputs 
and outputs becomes the longest path from the source 
node s to the sink node t. The second phase calculates the 
maximum delays of all the possible partial paths starting 
from vertex s and ending with the sink node t. In order to 
prune the unnecessary traversals in the path enumeration 
phase, we need to know the maximal delay to sink node t 
from each vertex in the graph. This information is useful 
when we traverse a partial path P starting from the 

sources and ending in a vertex v, we can find the 
maximum delay of all possible full paths. Thus, this 
phase calculates the maximum delay from all the vertices 
to sink in the graph. This computation starts from sink 
node t and works backward until it reaches the source 
node s. Third phase sorts the successors of each vertex to 
further simplify the pruning process. When we traverse 
the graph, we can immediately prune the path that is no 
larger than given threshold. 

Enumerating the K longest paths is final phase. In 
order to store the K longest paths in the graph, this phase 
maintains a data structure PATHS. There are K entries in 
PATHS where each entry hold a full path and its delay. 
First, the longest path can be extracted by function 
nextnode() recursively. The function nextnode(vi, vi+1) 
will return the vertex next to vi+1 in the sorted successors 
list of vi. If vi+1 is the last successor in the sorted list, it 
will return NULL. Next, the longest path is found and 
inserted into PATHS. Backward tracing is used to get the 
next partial path that has a greater delay than threshold T. 
Once a partial path with its delay greater than the 
threshold T is identified, it use forward tracing to extend 
the partial path to a full path. The newly generated full 
path is stored in PATHS. This enumeration process will 
terminate if all the possible paths are generated or pruned. 

 
2. Multi-corner Multi-mode Static Timing Analysis 

 
Static timing analysis (STA) estimates the circuit’s 

performance prior to manufacturing. The STA is 
reasonably accurate and efficient because test vectors are 
not required during the analysis. The SPICE-like circuit 
level simulations always produce the most accurate 

Let K be the number of most critical paths in graph G

1. Create the source s and the sink t 
2. Compute the maximum delays to the sink 
3. Sort the successors of each vertex
4. Enumerate the K longest paths

repeat 
Take out the partial path

until 
there are K completed paths

Algorithm

 

Fig. 1. The pseudo code presented in [5]. 
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results. However, it is not practical to apply to the large 
circuit design. Thus, STA is widely accepted method of 
verifying circuit performance at various design steps. 

The performance of a circuit is normally different at 
different temperatures. Therefore, timing analysis at 
various temperatures must be conducted to measure the 
operational speed of the design at different environment. 
Similarly, variations on supply voltage may alter 
operational speed of the circuit. Such conditions are so 
called “corners” and they include temperature, voltage, 
process parameters, and so on. Fig. 2 illustrates a simple 
flow of timing analysis and verification. For N 
parameters, the number of corners is 2N. Thus, we must 
perform the STA 2N times. Recently, the number of 
corners to consider for timing analysis is increased and as 
a result it becomes time consuming. 

Multi-corner multi-mode static timing analysis 
(MCMM STA) is another variation-aware approach to 
timing analysis that can serve as a compromise between 
traditional STA and statistical static timing analysis 
(SSTA) [14]. Unlike traditional STA, MCMM STA can 
analyze a circuit’s performance at various modes and 
corners while considering process variations. Multi-
corner analysis consists of process parameters, supply 
voltage, temperature, and so on. For example, the worst-
case timing analysis can be performed under conditions 
such as a low supply voltage, high temperature, and slow 
process parameters. Fig. 3 shows the best and worst 
corners consisting of the process, voltage, and 
temperature (PVT). The types of corners are categorized 
as best, typical, or worst. The modes include the 
following: functional mode, test mode, and sleep mode. 

Gate delays are described by affine functions [10] of 

the parameters as follows: 
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In Eq. (2.1), the term Delaygate is defined as gate delay 

and a0 is the nominal delay computed at nominal 
condition. Here, ai (1≤i≤n) denotes the sensitivity of Pi. 
The term Pi represents the process parameters such as the 
oxide thicknesses, effective channel length, and width. 
The coefficient of each parameter is defined as the 
sensitivity that represents degree of impact on the gate 
delay. The larger sensitivity implies larger impact on gate 
delay among other process parameters. The sensitivity 
can be determined as the following equation: 
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The term Pi,MAX is defined as the maximum value of Pi, 

and Pi,MIN is defined as the minimum value of Pi. To 
obtain the maximum delay, all the process parameters 
with positive sensitivity are set to 1 and all the process 
parameters with negative sensitivity are set to -1. Thus, 
the shortest and longest delays are obtained by setting 
each parameter to one of its extremes [11, 13]. 

III. MODIFIED K-MOST CRITICAL PATHS 

ALGORITHM 

The objective of the proposed method is to extract the 

 

Fig. 2. Timing verification. 
 

 

Fig. 3. Best and worst case corner that consists of process, 
voltage, temperature. 
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K-most critical paths in MCMM static timing analysis. 
At the same time, process variations must be considered 
for accurate analysis. The modified K-most critical path 
algorithm is described next. 

 
1. Overall Flow for Modified K-most Critical Paths 
Search Method 

 
Fig. 4 represents the overall flow of modified K-most 

critical paths search method. The proposed method 
extracts the K-most critical paths at various corners and 
modes. Throughout this paper, the K is defined as the 
number of longest paths and it is normally given by the 
user. As the first step of timing analysis, the circuit 
netlist is converted to a timing graph. In the graph, 
interconnection or input/output pins are represented as 
edges while logic gates are represented as nodes. In order 
to handle the boundary conditions, we modify the timing 
graph by adding a dummy source node and a dummy 
sink node in the first step. Then finding a longest path 
from primary inputs to primary outputs becomes the 

problem of finding the longest paths from the node s to t. 
As the second step, the maximum delay to sink node t 
from each vertex is calculated from the graph. At the 
third step, the successors of each vertex are sorted 
according to their delay. The fourth step is to obtain the 
maximum delays from source node s to each vertex. 
Then, the fifth step finds global threshold T using delay 
information obtained in second and fourth step. As the 
final step, the depth first search is performed with 
backward/forward tracing. The K-most critical paths at 
various corners and modes are extracted during the path 
enumeration phase. 

 
2. K-most Critical Paths Extraction using Multi-corner 
Multi-mode Static Timing Analysis 

 
This section explains how the K-critical paths search 

algorithm is modified to apply in MCMM static timing 
analysis in details. 

 
A. Generating the Timing Graph 

The proposed method requires a user-defined K which 
is the number of most critical paths among all possible 
paths and a circuit netlist as inputs. The circuit is firstly 
converted to acyclic timing graph as shown in Fig. 5. In 
order to apply a depth-first search for the whole graph, 
we modify the acyclic timing graph by adding a source 
node and a sink node. Then, a dummy edge is added 
from the source node to each of the starting vertices and 
from each of the ending vertices to the sink node. We 
assume the delay of dummy edges is zero and the weight 
of the vertex is zero. Fig. 6 represents a graph after 
source node, sink node, and dummy edges (dotted line) 
are inserted. This example will be used throughout this 
section. A full path P is defined as [vo, v1, v2, …, vn] if 
the node v0 is equal to the dummy source node s and vn is 
equal to the dummy sink node t. A partial path P is 

START

Extract K-most critical paths at every corner and mode 

Multi-corner 
Multi-mode Static 
Timing Analysis

Graph (Circuit Netlist), K (user defined)

Create the source node s and the sink node t

Sort the successors of each vertex

Compute the delays from source node s

END

Compute the maximum delays to the sink

Find a global threshold T

K-most critical paths enumeration

 

Fig. 4. The overall flow of modified K-most critical paths 
search method. 

 
 

 

Fig. 5. Converting the c17 circuit (a) from the ISCAS85’ 
benchmark to acyclic timing graph (b). 
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defined as [vo, v1, v2, …, vn] if the node v0 is not the 
dummy source node s or vn is not the sink node t. For 
example, [s, v1, v5, t], [s, v2, v3, v6, t] are both full paths 
and [s, v2, v3], [v4, v6, t] are both partial paths. The 
delay of path is summation of the edges. For example, 
the delay of full path [s, v1, v5, t] is summation of the 
edges <s, v1>, <v1, v5>, <s, t>. The delay of the edge is 
calculated using Eq. (2.1). The delay of edge <v1, v5> is 
2 + 3P1 + P2. If the parameters P1 and P2 are equal to 1, 
its delay becomes 6 from 2 + (3´ 1) + 1. 

 
B. Calculating the Maximum Delay 

After creating the graph, the maximum delay from all 
vertices to the sink node t is calculated as the next step. 
The delay of gate is represented as the canonical form 
instead of a constant value considering various corners 
and modes. 

When we find the K-most critical paths, the maximum 
delay from each vertex to sink node t is used for pruning 
unnecessary searches. We can find the maximum delay 
of all possible full paths that has partial path P as a prefix. 
As a result, the large amount of search space can be 
reduced by pruning. Computing maximum delay from 
each vertex to sink node t starts backward from sink node 
t until the source node s is reached. The maximum delay 
of the vi is define as MaxDelay (vi) and it is equal to 
MAX { MaxDelay (u) + d <vi, u> } where u is successors 
of vi. For example, when we calculate the maximum 
delay of v2 in Fig. 7, the maximum delays of v2’s 
successors have to be computed beforehand. The 
maximum delay of v5 which is a successor of v2, 
MaxDelay (v5), can be represented as MaxDelay (t) + d 
<v5, t>. Thus, its delay becomes 5 from 0 + (3 + 1´ 1 + 
1 ´ 1). The maximum delay of v6 is 2 by similar 
calculation. Then, the maximum delay of the next node 
v3, MaxDelay(v3), can be calculated as MAX 

{ MaxDelay (v5) + d<v3,v5> , MaxDelay (v6) + 
d<v3,v6> }. It is equal to MAX { (3 + P1 + P2) + (6 + 2P1 

+ 3P2), (2 + P1 - P2) + (4 + P1 + 6P2) }. Its delay becomes 
{ 9 + 3P1 + 4P2 }. Hence, the maximum delay from v2 to 
sink is 12 + 4P1 + 7P2. Likewise the maximum delay of 
each vertex is calculated. The order of the MAX 
operation [11] is a linear function and it is used to 
calculate delay of each node in our method. 

 
C. Sorting the Successors 

Sorting successors is an efficient way of reducing 
search space. Thus, the successors of each vertex are 
stored at adjacent list in decreasing order. Fig. 8 provides 
an example of the sorted successors list used in this paper. 
For example, the v3’s successors are v5 and v6. Because 
the delay of v5 is larger than that of v6, the v5 is stored 
next to v3 at adjacent list in Fig. 8. When the current path 
is [s, v2, v3] in Fig. 7 and the delay of [s, v2, v3, v6] is 
smaller than threshold, the vertex v6 will be pruned. 

 
D. Calculating the maximum delay from source node s 

and finding a global threshold T 
Calculating the delay from source node s to each 

vertex is used for finding a global threshold T. The 
global threshold T is defined as Kth delay of a path 
among all corners and modes. Computing the delay from 
source node s to each vertex starts forward from source 

 

Fig. 6. Graph representation after source node, sink node and 
dummy edges are added in Fig. 5(b). 
 

 

Fig. 7. The example of the maximum delay from each vertex to 
sink node t using linear function. 

 

 

Fig. 8. Successor sort with decreasing order. 
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node s until the sink node t is reached. The maximum 
delay from source node s to the vi is define as 
SrcToDelay (vi) and it is equal to MAX { SrcToDelay (un) 
+ d <un, vi>} where un are predecessors of vi. The 
calculation process is similar to the calculation of 
maximum delay. This information which is not 
represented in existing methods is very useful. 

Finding a global threshold T is a crucial step in the 
modified K-most critical paths algorithm. If the initial 
threshold is set to a proper value, the large amount of 
search space can be reduced. In existing methods, the 
threshold T is set to zero or user-define value (n% delay 
of critical paths). Thus, the search time to find critical 
paths become increased or unpredictable. The proposed 
method obtains the global threshold T using MaxDelay() 
function and SrcToDelay() functions. At all vertices, the 
maximum delay from source node s to each vertex is 
added to the maximum delay from each vertex to sink 
node t, and it is expressed as {SrcToDelay(vi) + 
MaxDelay(vj)}. Also, this function is calculated at all 
corners and modes. When the number of corners/modes 
is n and the number of vertices in a circuit is m, the delay 
of each vertex at 2n corners is calculated. Then, they are 
stored at Threshold Bound (TB) array (2n x m entries) in 
decreasing order. The Kth entry of TB array is set to the 
global threshold T. The critical delay path at one corner 
may not be the critical delay at a different corner. 
Namely, at a corner, the longest path delay can become 
the second longest or the third longest path delay at a 
different corner. Thus, setting threshold T among all 
corner and modes is efficient. We can reduce search 
space to K-critical paths. We need not to update 
threshold T since the global threshold T at first is 
determined once. We can reduce search time by 
removing unnecessary update process. For example, Fig. 
10 is example of global threshold presented in this paper. 
At each vertex, the {SrcToDelay(vi) + MaxDelay(vj)} 
function is calculated at 4 corners. At v4, since the 
number of predecessors is 2 and the number of 
successors is 1, the number of combination is 2 (2x1). As 
a result, Total 8 delays (2 combinations x 4 corners) are 
generated at v4. In a graph, this process is repeated at all 
vertices and generated delays are stored in TB array with 
decreasing order. Finally, 3rd entry TB array is set to the 
global threshold T. 

 

E. Extracting the K-Most Critical Paths at Multi-corner 
Multi-mode 
After computing maximum delay at each node, a data 

structure array MKPATH that contains K entries is 
created. The path information is stored in MKPATH in 
decreasing order. At first, we extract a longest path from 
the source node s to the sink t using greedy algorithm [2]. 
Existing methods find one partial or full path at 
beginning stage. However, to search K-critical paths after 
finding a longest path can reduce amount of search time. 
The delay of Kth full path is set as the global threshold T 
and it is stored in MKPATH[0]. The modified K-most 
critical paths algorithms utilizes the non-zero threshold 
value that eventually reduces search space. The newly 
extracted path that has a delay greater than threshold T is 
stored in MKPATH. The backward tracing at sink node 
begins to get the full path which has a delay greater than 
the current threshold T. When a full path [s, v1, v2, …, 
vn-1, vn, t] is generated, the backward trace moves first 
from sink node t to the vertex vn. The function 
nextnode(vi, vi+1) returns the vertex next to vi+1 in the 
sorted successors list. Otherwise, when vi+1 is the last 
successor in the sorted successor list, the next node will 
be vertex vi-1. If nextnode(vi, vi+1) return the vertex vnex 
next to vi+1, and MaxDelay(P[s, vi, …,vi, vnex, t]) is a 
delay greater than threshold T, the backward tracing is 
terminated and the forward tracing is used to get the full 
path that is a delay greater than threshold T. For example, 
when the function nextnode(vi, vi+1) is v3 in Fig. 9, the 
backward tracing is terminated. The delay from source 
node s to v3 is added MaxDelay(v3) in Fig. 9. It is equal 
to A+B+C. If this is greater than threshold T, the forward 
tracing will progress to v6. Otherwise, the path that 
includes v6 is pruned. The path pruning can reduce large 
amount of search space. The enumeration stage will be 
terminated if all the possible paths are generated or 
pruned. Fig. 11 is the pseudo code of modified K-most 
critical paths algorithm. For example, when we find the 
three critical paths in Fig. 6, the first step is to find 
optimal threshold T for reducing search space. The 
greedy algorithm will find the full path [s, v2, v3, v5, t] 
which has the delay 18 + 7P1 + 8P2. This path and delay 
are inserted into MKPATH[0]. Then, the backward 
tracing is started at sink nodes. To determine whether the 
path is pruned or not, the following conditions have to be 
checked. 
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Threshold T is 10 + 5P1 - 2P2, nextnode(v3, v5) is v6, and 
the delay of P[s, v2, v3, v6] is 15 + 6P1 + 9P2. Because the 
delay of P[s, v2, v3, v6] is greater than threshold T, the 
forward tracing will find the full path P[s, v2, v3, v6, t]. 
And this path is inserted into MKPATH[1]. The second 
iteration, backward tracing will trace back to v4. Threshold 
T is 10 + 5P1 - 2P2, nextnode(v2, v3) is v4, and the delay of 
P[s, v2, v4, t] is 14 + 7P1 -P2. Because the delay of P[s, v2, 
v4, t] is greater than threshold T, the forward tracing will 
find the full path P[s, v2, v4, v6, t] and its delay is inserted 
into MKPATH[2]. This process is terminated until all the 
possible paths are generated or pruned. 

Fig. 12 shows the final results after the K-most critical 
paths in a graph is generated. The parameters p1 and p2 
are assigned a value of either -1 or 1. The maximum 
condition of each parameter is normalized as 1, and the 
minimum condition of each parameter is normalized as -

 

Fig. 9. The example of path pruning with given threshold, 
backward and forward tracing.  
 

 

Fig. 10. The example the global threshold T is calculated 
among 4 process corners (K=3).  

 

 

Fig. 11. The pseudo code of the modified K-most critical paths 
algorithm. 

 

 

Fig. 12. The K-most critical paths extraction and enumeration 
in all corner/modes according to decreasing order. 
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1. Through this information, we can obtain the delay in 
all corners and modes. For example, when two process 
parameters are considered as p1 and p2, the total number 
of corners are 22 = 4 corners such as (1, 1), (1, -1), (-1, 1), 
(-1,-1). Thus, timing results can be attained from multi-
corner multi-mode scenario. 

 
F. Time Complexity Analysis 

Let n be the number of vertices and m be the number 
of edges in the graph. The creation of source node s and 
sink node t takes a constant time. In the step of 
computing maximum delay, each edge of the graph is 
traversed exactly once. Hence, the overall complexity of 
computing maximum delay for all the vertices is O(m+n). 
The time complexity of sorting phase is O(m+n+mlogm). 
The time complexity of calculating maximum delays 
from source node t is same as that of computing 
maximum delay. It becomes O(m+n+mlogm) ≈ 
O(mlogm). In every iteration step, there is one deletion 
and dmax insertions. If the number of iterations is Nitr, the 
time complexity of the enumeration phase becomes 
O(Nitr·logK). Therefore, the overall time complexity of 
the modified K-most critical paths algorithm is 
O(m+n+mlogm+Nitr·logK) ≈ O(mlogm+Nitr·logK). 

IV. EXPERIMENT RESULTS 

The modified K-most critical paths algorithm using 
multi-corner multi-mode static timing analysis (MCMM 
STA) is implemented in C/C++ language. We verified 
the proposed method using a 32mm technology and used 
a predictive technology model (PTM) [15] with HSPICE. 
In our experiment, we considered the following six 
process parameters: temperature, voltage, oxide film 
thickness, threshold voltage, channel length, and width. 
Process variations have a normal distribution and the 
standard deviation is set to 5% of their average. Table 1 
shows the run time when the number of paths to find K is 
arbitrarily set to one hundred in a typical corner. We 
applied our algorithm to ISCAS’85 benchmark circuits: 
c432, c499, c880, c1355, c1908, c2670 and compared 
with breadth first search with branch and bound 
(BFSB&B), depth first search with branch and bound 
(DFSB&B). The BFSB&B and DFSB&B [16, 17] are 
strategies that combined basic DFS/BFS with B&B 
(pruning). The result shows that our method take less 

time than the others. Our proposed method improve 
search time up to 30%. 

The global threshold proposed in our method is 
compared with the threshold of existing method. The 
existing method set its initial threshold to 0 and updated 
it. Fig. 13 is the search time on c432 benchmark circuit 
when the number of critical paths K is set from 20 to 180 
and the number of process parameter is set to two. The 
global threshold T used in modified K-most critical paths 
algorithm more reduces the search space than existing 
method. Thus, the global threshold T presented in the 
modified K-most critical paths algorithm is efficient and 
fast when we find the K-most critical paths. Also the 
modified K-most critical paths algorithm is more 
efficient in multi-corner multi-mode scenario. 

To show the efficiency of the proposed method, we 
compared a global threshold T presented in this paper 
with existing methods. Existing methods that include 
original K-critical path generally use a threshold T as 
zero or n% delay of critical path. The number of pruning 

Table 1. The run time of the proposed method compared to 
breadth-first search (BFS) and depth-first search (DFS), with 
K=100 

Run time for Critical Path Search (sec) , K=100 
ISCAS’85 
CIRCUIT 

BFS 
with 
B&B 

DFS 
with 
B&B 

Proposed 
Method Improvement (%) 

C432 5.983 6.415 4.193 29.92% 34.64% 
C499 5.366 5.234 3.466 35.41% 33.78% 
C880 5.817 5.909 5.317 8.60% 10.02% 
C1355 5.292 5.532 3.592 32.12% 35.07% 
C1908 14.328 15.433 10.428 27.22% 32.43% 
C2670 18.439 18.638 12.439 32.54% 33.26% 
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e 

(s
ec
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Fig. 13. The global threshold T used in modified K-most 
critical paths algorithm. 
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happened during traversing a graph is small in existing 
methods. Therefore, they are time-consuming and it is 
difficult to predict search time. Fig. 13 represents the 
number of pruning operation used in modified K-most 
critical paths algorithm according to the number of 
corners when K is one hundred at c432. The number of 
pruning in proposed method is smaller than existing 
methods based on DFS with pruning. Also, as the corners 
increased, our method is fast and efficient. 

In Table 2, to prove this, we applied our method to 
circuits in multi-corner multi-mode and compared the 
run-time in our method with breadth first search with 
branch and bound (BFSB&B) and depth first search with 
branch and bound (DFSB&B). The number of corners is 
set to 24 and 26. The number of paths to find K is 
arbitrarily set to 100 and 120. The proposed method 
reduces more search space than other methods. Through 
this experiment, as the number of corners increased, our 
method is more efficient than existing methods. Because 
our proposed method assigns initial threshold to Kth 
delay of a path among all paths in all the given corners, 

the number of pruning in traversal process is more 
increased than BFSB&B and DFSB&B. Thus, the results 
show that the proposed method reduced the search time 
more by approximately 30.36%, 21.58%, compared to 
BFSB&B and DFSB&B respectively. Therefore, the 
modified K-most critical paths algorithm is faster than 
existing methods. 

V. CONCLUSIONS 

The modified K-most critical paths algorithm in multi-
corner multi-mode is presented. It reduces the search 
space through path pruning. Also, to further prune paths, 
we propose initial threshold bound that is called global 
threshold T and our algorithm uses the global threshold T 
that is obtained in multi-corner multi-mode scenario. 
Thus, we can quickly extract the K-most critical paths in 
MCMM scenario and reduce the time required to analyze 
circuits. The experiment results demonstrate that the 
proposed method reduces the search time by up to 
30.36% than existing methods. 
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