
JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.16, NO.6, DECEMBER, 2016 ISSN(Print) 1598-1657
https://doi.org/10.5573/JSTS.2016.16.6.771 ISSN(Online) 2233-4866

Manuscript received Jan. 24, 2016; accepted Nov. 1, 2016
Department of Computer Science and Engineering, Sogang University,
Seoul 04107, Korea
E-mail : pci123@sogang.ac.kr

Extracting the K-most Critical Paths in Multi-corner
Multi-mode for Fast Static Timing Analysis

Deok-Keun Oh, Myeoung-Woo Jin, and Ju-Ho Kim

Abstract—Detecting a set of longest paths is one of the
crucial steps in static timing analysis and optimization.
Recently, the process variation during manufacturing
affects performance of the circuit design due to
nanometer feature size. Measuring the performance
of a circuit prior to its fabrication requires a
considerable amount of computation time because it
requires multi-corner and multi-mode analysis with
process variations. An efficient algorithm of detecting
the K-most critical paths in multi-corner multi-mode
static timing analysis (MCMM STA) is proposed in
this paper. The ISCAS’85 benchmark suite using a
32 nm technology is applied to verify the proposed
method. The proposed K-most critical paths detection
method reduces about 25% of computation time on
average.

Index Terms—Process variation, critical path, static
timing analysis, path pruning, MCMM

I. INTRODUCTION

Due to the rapid progress in circuit design technology,
the complexity of a digital system and its size have
increased dramatically. Thus, timing analysis and
verification play an important role to satisfy the given
timing constraint. The maximum operation speed of
digital integrated circuit is determined by the slowest
path that is so called the critical path. Detecting and
identifying a set of critical paths are crucial steps in

timing analysis and optimization. There exist many
techniques [1-4] of extracting critical paths followed by
delay analysis of digital circuits. The depth-first search
and breadth-first search [1] are two major critical path
search algorithms. An efficient algorithm of detecting K-
most critical paths was proposed in [6] and the benefit
comes from pruning unnecessary searches. Applying the
above search algorithms to recent circuit design suffers
from path explosion problem due to large circuit size and
multi-corner multi-mode (MCMM) analysis. In the
proposed method, modification and improvement are
made to the existing K-most critical paths algorithm [5]
for efficient timing analysis.

As complementary metal-oxide semiconductor
(CMOS) technology has been scaled down to the
nanometer range, process variations of device parameters
have great impact on circuit performance. Taking process
variations into account in timing analysis requires more
computational effort. Multi-corner multi-mode static
timing analysis (MCMM STA) is another variation-
aware approach to timing analysis that can serve as a
compromise between traditional STA [7] and statistical
static timing analysis (SSTA) [8]. In timing analysis,
MCMM STA is very efficient in a sense that it
propagates only minimum and maximum delay values.
MCMM STA can simultaneously analyze a circuit’s
performance at various modes and corners while
considering process variations.

The remainder of the paper is organized as follows.
Section II describes the basic concept of K-most critical
path search algorithm and multi-corner multi-mode static
timing analysis. Modified K-most critical path detection
method using MCMM STA is presented in Section III.
Section IV presents the experimental results. Finally,

772 DEOK-KEUN OH et al : EXTRACTING THE K-MOST CRITICAL PATHS IN MULTI-CORNER MULTI-MODE FOR FAST …

concluding remarks are given in Section V.

II. BACKGROUND

Performance has been one of the major design
constraints along with area and power. Timing analysis
can be performed at various design stages to meet the
timing constraint. In this section, we briefly describe K-
most critical path algorithm [5] and basics of multi-
corner multi-mode static timing analysis.

1. K-Most Critical Paths Algorithm

The well-known critical path search methods include

the breadth-first search, depth-first search, and the PERT
method [9]. The critical path search algorithms normally
report only the critical path to the designer and it fails to
give sufficient information for correcting the timing
violations.

Based on either a breadth-first search or depth-first
search, path enumeration algorithms have been proposed
in [6, 7]. Although these algorithms provide more
information than the critical path algorithms, they suffer
from the path explosion problem.

The K-most critical path algorithm [5] is proposed to
generate the K longest paths for a given acyclic directed
graph. It is an efficient approach to find a set of long
paths [12]. The pseudo code of the algorithm [5] is
summarized in Fig. 1. The algorithm consists of four
phase: creating the source and sink node, computing the
maximum delay to sink, sorting the successors of each
vertex, and finally K longest path enumeration.

In the first phase, a source node s and a sink node t are
added to the graph for the purpose of easy handling and
simplifying the boundary conditions. A dummy edge is
added from node s to each of the starting vertices and
from each of the ending vertices to the node t. Then, the
longest path of the graph with multiple primary inputs
and outputs becomes the longest path from the source
node s to the sink node t. The second phase calculates the
maximum delays of all the possible partial paths starting
from vertex s and ending with the sink node t. In order to
prune the unnecessary traversals in the path enumeration
phase, we need to know the maximal delay to sink node t
from each vertex in the graph. This information is useful
when we traverse a partial path P starting from the

sources and ending in a vertex v, we can find the
maximum delay of all possible full paths. Thus, this
phase calculates the maximum delay from all the vertices
to sink in the graph. This computation starts from sink
node t and works backward until it reaches the source
node s. Third phase sorts the successors of each vertex to
further simplify the pruning process. When we traverse
the graph, we can immediately prune the path that is no
larger than given threshold.

Enumerating the K longest paths is final phase. In
order to store the K longest paths in the graph, this phase
maintains a data structure PATHS. There are K entries in
PATHS where each entry hold a full path and its delay.
First, the longest path can be extracted by function
nextnode() recursively. The function nextnode(vi, vi+1)
will return the vertex next to vi+1 in the sorted successors
list of vi. If vi+1 is the last successor in the sorted list, it
will return NULL. Next, the longest path is found and
inserted into PATHS. Backward tracing is used to get the
next partial path that has a greater delay than threshold T.
Once a partial path with its delay greater than the
threshold T is identified, it use forward tracing to extend
the partial path to a full path. The newly generated full
path is stored in PATHS. This enumeration process will
terminate if all the possible paths are generated or pruned.

2. Multi-corner Multi-mode Static Timing Analysis

Static timing analysis (STA) estimates the circuit’s

performance prior to manufacturing. The STA is
reasonably accurate and efficient because test vectors are
not required during the analysis. The SPICE-like circuit
level simulations always produce the most accurate

Let K be the number of most critical paths in graph G

1. Create the source s and the sink t
2. Compute the maximum delays to the sink
3. Sort the successors of each vertex
4. Enumerate the K longest paths

repeat
Take out the partial path

until
there are K completed paths

Algorithm

Fig. 1. The pseudo code presented in [5].

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.16, NO.6, DECEMBER, 2016 773

results. However, it is not practical to apply to the large
circuit design. Thus, STA is widely accepted method of
verifying circuit performance at various design steps.

The performance of a circuit is normally different at
different temperatures. Therefore, timing analysis at
various temperatures must be conducted to measure the
operational speed of the design at different environment.
Similarly, variations on supply voltage may alter
operational speed of the circuit. Such conditions are so
called “corners” and they include temperature, voltage,
process parameters, and so on. Fig. 2 illustrates a simple
flow of timing analysis and verification. For N
parameters, the number of corners is 2N. Thus, we must
perform the STA 2N times. Recently, the number of
corners to consider for timing analysis is increased and as
a result it becomes time consuming.

Multi-corner multi-mode static timing analysis
(MCMM STA) is another variation-aware approach to
timing analysis that can serve as a compromise between
traditional STA and statistical static timing analysis
(SSTA) [14]. Unlike traditional STA, MCMM STA can
analyze a circuit’s performance at various modes and
corners while considering process variations. Multi-
corner analysis consists of process parameters, supply
voltage, temperature, and so on. For example, the worst-
case timing analysis can be performed under conditions
such as a low supply voltage, high temperature, and slow
process parameters. Fig. 3 shows the best and worst
corners consisting of the process, voltage, and
temperature (PVT). The types of corners are categorized
as best, typical, or worst. The modes include the
following: functional mode, test mode, and sleep mode.

Gate delays are described by affine functions [10] of

the parameters as follows:

0 1 1 2 2

0
1

gate n n

n

i i
i

Delay a a P a P a P

a a P
=

= + + + ×××

= +å
 (2.1)

In Eq. (2.1), the term Delaygate is defined as gate delay

and a0 is the nominal delay computed at nominal
condition. Here, ai (1≤i≤n) denotes the sensitivity of Pi.
The term Pi represents the process parameters such as the
oxide thicknesses, effective channel length, and width.
The coefficient of each parameter is defined as the
sensitivity that represents degree of impact on the gate
delay. The larger sensitivity implies larger impact on gate
delay among other process parameters. The sensitivity
can be determined as the following equation:

, ,

, ,

@ @
 ,

 1, 2,3,

i MAX i MIN
i

i MAX i MIN

Delay P Delay P
a

P P
i

-
=

-

= L
 (2.2)

The term Pi,MAX is defined as the maximum value of Pi,

and Pi,MIN is defined as the minimum value of Pi. To
obtain the maximum delay, all the process parameters
with positive sensitivity are set to 1 and all the process
parameters with negative sensitivity are set to -1. Thus,
the shortest and longest delays are obtained by setting
each parameter to one of its extremes [11, 13].

III. MODIFIED K-MOST CRITICAL PATHS

ALGORITHM

The objective of the proposed method is to extract the

Fig. 2. Timing verification.

Fig. 3. Best and worst case corner that consists of process,
voltage, temperature.

774 DEOK-KEUN OH et al : EXTRACTING THE K-MOST CRITICAL PATHS IN MULTI-CORNER MULTI-MODE FOR FAST …

K-most critical paths in MCMM static timing analysis.
At the same time, process variations must be considered
for accurate analysis. The modified K-most critical path
algorithm is described next.

1. Overall Flow for Modified K-most Critical Paths
Search Method

Fig. 4 represents the overall flow of modified K-most

critical paths search method. The proposed method
extracts the K-most critical paths at various corners and
modes. Throughout this paper, the K is defined as the
number of longest paths and it is normally given by the
user. As the first step of timing analysis, the circuit
netlist is converted to a timing graph. In the graph,
interconnection or input/output pins are represented as
edges while logic gates are represented as nodes. In order
to handle the boundary conditions, we modify the timing
graph by adding a dummy source node and a dummy
sink node in the first step. Then finding a longest path
from primary inputs to primary outputs becomes the

problem of finding the longest paths from the node s to t.
As the second step, the maximum delay to sink node t
from each vertex is calculated from the graph. At the
third step, the successors of each vertex are sorted
according to their delay. The fourth step is to obtain the
maximum delays from source node s to each vertex.
Then, the fifth step finds global threshold T using delay
information obtained in second and fourth step. As the
final step, the depth first search is performed with
backward/forward tracing. The K-most critical paths at
various corners and modes are extracted during the path
enumeration phase.

2. K-most Critical Paths Extraction using Multi-corner
Multi-mode Static Timing Analysis

This section explains how the K-critical paths search

algorithm is modified to apply in MCMM static timing
analysis in details.

A. Generating the Timing Graph

The proposed method requires a user-defined K which
is the number of most critical paths among all possible
paths and a circuit netlist as inputs. The circuit is firstly
converted to acyclic timing graph as shown in Fig. 5. In
order to apply a depth-first search for the whole graph,
we modify the acyclic timing graph by adding a source
node and a sink node. Then, a dummy edge is added
from the source node to each of the starting vertices and
from each of the ending vertices to the sink node. We
assume the delay of dummy edges is zero and the weight
of the vertex is zero. Fig. 6 represents a graph after
source node, sink node, and dummy edges (dotted line)
are inserted. This example will be used throughout this
section. A full path P is defined as [vo, v1, v2, …, vn] if
the node v0 is equal to the dummy source node s and vn is
equal to the dummy sink node t. A partial path P is

START

Extract K-most critical paths at every corner and mode

Multi-corner
Multi-mode Static
Timing Analysis

Graph (Circuit Netlist), K (user defined)

Create the source node s and the sink node t

Sort the successors of each vertex

Compute the delays from source node s

END

Compute the maximum delays to the sink

Find a global threshold T

K-most critical paths enumeration

Fig. 4. The overall flow of modified K-most critical paths
search method.

Fig. 5. Converting the c17 circuit (a) from the ISCAS85’
benchmark to acyclic timing graph (b).

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.16, NO.6, DECEMBER, 2016 775

defined as [vo, v1, v2, …, vn] if the node v0 is not the
dummy source node s or vn is not the sink node t. For
example, [s, v1, v5, t], [s, v2, v3, v6, t] are both full paths
and [s, v2, v3], [v4, v6, t] are both partial paths. The
delay of path is summation of the edges. For example,
the delay of full path [s, v1, v5, t] is summation of the
edges <s, v1>, <v1, v5>, <s, t>. The delay of the edge is
calculated using Eq. (2.1). The delay of edge <v1, v5> is
2 + 3P1 + P2. If the parameters P1 and P2 are equal to 1,
its delay becomes 6 from 2 + (3´ 1) + 1.

B. Calculating the Maximum Delay

After creating the graph, the maximum delay from all
vertices to the sink node t is calculated as the next step.
The delay of gate is represented as the canonical form
instead of a constant value considering various corners
and modes.

When we find the K-most critical paths, the maximum
delay from each vertex to sink node t is used for pruning
unnecessary searches. We can find the maximum delay
of all possible full paths that has partial path P as a prefix.
As a result, the large amount of search space can be
reduced by pruning. Computing maximum delay from
each vertex to sink node t starts backward from sink node
t until the source node s is reached. The maximum delay
of the vi is define as MaxDelay (vi) and it is equal to
MAX { MaxDelay (u) + d <vi, u> } where u is successors
of vi. For example, when we calculate the maximum
delay of v2 in Fig. 7, the maximum delays of v2’s
successors have to be computed beforehand. The
maximum delay of v5 which is a successor of v2,
MaxDelay (v5), can be represented as MaxDelay (t) + d
<v5, t>. Thus, its delay becomes 5 from 0 + (3 + 1´ 1 +
1 ´ 1). The maximum delay of v6 is 2 by similar
calculation. Then, the maximum delay of the next node
v3, MaxDelay(v3), can be calculated as MAX

{ MaxDelay (v5) + d<v3,v5> , MaxDelay (v6) +
d<v3,v6> }. It is equal to MAX { (3 + P1 + P2) + (6 + 2P1

+ 3P2), (2 + P1 - P2) + (4 + P1 + 6P2) }. Its delay becomes
{ 9 + 3P1 + 4P2 }. Hence, the maximum delay from v2 to
sink is 12 + 4P1 + 7P2. Likewise the maximum delay of
each vertex is calculated. The order of the MAX
operation [11] is a linear function and it is used to
calculate delay of each node in our method.

C. Sorting the Successors

Sorting successors is an efficient way of reducing
search space. Thus, the successors of each vertex are
stored at adjacent list in decreasing order. Fig. 8 provides
an example of the sorted successors list used in this paper.
For example, the v3’s successors are v5 and v6. Because
the delay of v5 is larger than that of v6, the v5 is stored
next to v3 at adjacent list in Fig. 8. When the current path
is [s, v2, v3] in Fig. 7 and the delay of [s, v2, v3, v6] is
smaller than threshold, the vertex v6 will be pruned.

D. Calculating the maximum delay from source node s

and finding a global threshold T
Calculating the delay from source node s to each

vertex is used for finding a global threshold T. The
global threshold T is defined as Kth delay of a path
among all corners and modes. Computing the delay from
source node s to each vertex starts forward from source

Fig. 6. Graph representation after source node, sink node and
dummy edges are added in Fig. 5(b).

Fig. 7. The example of the maximum delay from each vertex to
sink node t using linear function.

Fig. 8. Successor sort with decreasing order.

776 DEOK-KEUN OH et al : EXTRACTING THE K-MOST CRITICAL PATHS IN MULTI-CORNER MULTI-MODE FOR FAST …

node s until the sink node t is reached. The maximum
delay from source node s to the vi is define as
SrcToDelay (vi) and it is equal to MAX { SrcToDelay (un)
+ d <un, vi>} where un are predecessors of vi. The
calculation process is similar to the calculation of
maximum delay. This information which is not
represented in existing methods is very useful.

Finding a global threshold T is a crucial step in the
modified K-most critical paths algorithm. If the initial
threshold is set to a proper value, the large amount of
search space can be reduced. In existing methods, the
threshold T is set to zero or user-define value (n% delay
of critical paths). Thus, the search time to find critical
paths become increased or unpredictable. The proposed
method obtains the global threshold T using MaxDelay()
function and SrcToDelay() functions. At all vertices, the
maximum delay from source node s to each vertex is
added to the maximum delay from each vertex to sink
node t, and it is expressed as {SrcToDelay(vi) +
MaxDelay(vj)}. Also, this function is calculated at all
corners and modes. When the number of corners/modes
is n and the number of vertices in a circuit is m, the delay
of each vertex at 2n corners is calculated. Then, they are
stored at Threshold Bound (TB) array (2n x m entries) in
decreasing order. The Kth entry of TB array is set to the
global threshold T. The critical delay path at one corner
may not be the critical delay at a different corner.
Namely, at a corner, the longest path delay can become
the second longest or the third longest path delay at a
different corner. Thus, setting threshold T among all
corner and modes is efficient. We can reduce search
space to K-critical paths. We need not to update
threshold T since the global threshold T at first is
determined once. We can reduce search time by
removing unnecessary update process. For example, Fig.
10 is example of global threshold presented in this paper.
At each vertex, the {SrcToDelay(vi) + MaxDelay(vj)}
function is calculated at 4 corners. At v4, since the
number of predecessors is 2 and the number of
successors is 1, the number of combination is 2 (2x1). As
a result, Total 8 delays (2 combinations x 4 corners) are
generated at v4. In a graph, this process is repeated at all
vertices and generated delays are stored in TB array with
decreasing order. Finally, 3rd entry TB array is set to the
global threshold T.

E. Extracting the K-Most Critical Paths at Multi-corner
Multi-mode
After computing maximum delay at each node, a data

structure array MKPATH that contains K entries is
created. The path information is stored in MKPATH in
decreasing order. At first, we extract a longest path from
the source node s to the sink t using greedy algorithm [2].
Existing methods find one partial or full path at
beginning stage. However, to search K-critical paths after
finding a longest path can reduce amount of search time.
The delay of Kth full path is set as the global threshold T
and it is stored in MKPATH[0]. The modified K-most
critical paths algorithms utilizes the non-zero threshold
value that eventually reduces search space. The newly
extracted path that has a delay greater than threshold T is
stored in MKPATH. The backward tracing at sink node
begins to get the full path which has a delay greater than
the current threshold T. When a full path [s, v1, v2, …,
vn-1, vn, t] is generated, the backward trace moves first
from sink node t to the vertex vn. The function
nextnode(vi, vi+1) returns the vertex next to vi+1 in the
sorted successors list. Otherwise, when vi+1 is the last
successor in the sorted successor list, the next node will
be vertex vi-1. If nextnode(vi, vi+1) return the vertex vnex
next to vi+1, and MaxDelay(P[s, vi, …,vi, vnex, t]) is a
delay greater than threshold T, the backward tracing is
terminated and the forward tracing is used to get the full
path that is a delay greater than threshold T. For example,
when the function nextnode(vi, vi+1) is v3 in Fig. 9, the
backward tracing is terminated. The delay from source
node s to v3 is added MaxDelay(v3) in Fig. 9. It is equal
to A+B+C. If this is greater than threshold T, the forward
tracing will progress to v6. Otherwise, the path that
includes v6 is pruned. The path pruning can reduce large
amount of search space. The enumeration stage will be
terminated if all the possible paths are generated or
pruned. Fig. 11 is the pseudo code of modified K-most
critical paths algorithm. For example, when we find the
three critical paths in Fig. 6, the first step is to find
optimal threshold T for reducing search space. The
greedy algorithm will find the full path [s, v2, v3, v5, t]
which has the delay 18 + 7P1 + 8P2. This path and delay
are inserted into MKPATH[0]. Then, the backward
tracing is started at sink nodes. To determine whether the
path is pruned or not, the following conditions have to be
checked.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.16, NO.6, DECEMBER, 2016 777

Threshold T is 10 + 5P1 - 2P2, nextnode(v3, v5) is v6, and
the delay of P[s, v2, v3, v6] is 15 + 6P1 + 9P2. Because the
delay of P[s, v2, v3, v6] is greater than threshold T, the
forward tracing will find the full path P[s, v2, v3, v6, t].
And this path is inserted into MKPATH[1]. The second
iteration, backward tracing will trace back to v4. Threshold
T is 10 + 5P1 - 2P2, nextnode(v2, v3) is v4, and the delay of
P[s, v2, v4, t] is 14 + 7P1 -P2. Because the delay of P[s, v2,
v4, t] is greater than threshold T, the forward tracing will
find the full path P[s, v2, v4, v6, t] and its delay is inserted
into MKPATH[2]. This process is terminated until all the
possible paths are generated or pruned.

Fig. 12 shows the final results after the K-most critical
paths in a graph is generated. The parameters p1 and p2
are assigned a value of either -1 or 1. The maximum
condition of each parameter is normalized as 1, and the
minimum condition of each parameter is normalized as -

Fig. 9. The example of path pruning with given threshold,
backward and forward tracing.

Fig. 10. The example the global threshold T is calculated
among 4 process corners (K=3).

Fig. 11. The pseudo code of the modified K-most critical paths
algorithm.

Fig. 12. The K-most critical paths extraction and enumeration
in all corner/modes according to decreasing order.

778 DEOK-KEUN OH et al : EXTRACTING THE K-MOST CRITICAL PATHS IN MULTI-CORNER MULTI-MODE FOR FAST …

1. Through this information, we can obtain the delay in
all corners and modes. For example, when two process
parameters are considered as p1 and p2, the total number
of corners are 22 = 4 corners such as (1, 1), (1, -1), (-1, 1),
(-1,-1). Thus, timing results can be attained from multi-
corner multi-mode scenario.

F. Time Complexity Analysis

Let n be the number of vertices and m be the number
of edges in the graph. The creation of source node s and
sink node t takes a constant time. In the step of
computing maximum delay, each edge of the graph is
traversed exactly once. Hence, the overall complexity of
computing maximum delay for all the vertices is O(m+n).
The time complexity of sorting phase is O(m+n+mlogm).
The time complexity of calculating maximum delays
from source node t is same as that of computing
maximum delay. It becomes O(m+n+mlogm) ≈
O(mlogm). In every iteration step, there is one deletion
and dmax insertions. If the number of iterations is Nitr, the
time complexity of the enumeration phase becomes
O(Nitr·logK). Therefore, the overall time complexity of
the modified K-most critical paths algorithm is
O(m+n+mlogm+Nitr·logK) ≈ O(mlogm+Nitr·logK).

IV. EXPERIMENT RESULTS

The modified K-most critical paths algorithm using
multi-corner multi-mode static timing analysis (MCMM
STA) is implemented in C/C++ language. We verified
the proposed method using a 32mm technology and used
a predictive technology model (PTM) [15] with HSPICE.
In our experiment, we considered the following six
process parameters: temperature, voltage, oxide film
thickness, threshold voltage, channel length, and width.
Process variations have a normal distribution and the
standard deviation is set to 5% of their average. Table 1
shows the run time when the number of paths to find K is
arbitrarily set to one hundred in a typical corner. We
applied our algorithm to ISCAS’85 benchmark circuits:
c432, c499, c880, c1355, c1908, c2670 and compared
with breadth first search with branch and bound
(BFSB&B), depth first search with branch and bound
(DFSB&B). The BFSB&B and DFSB&B [16, 17] are
strategies that combined basic DFS/BFS with B&B
(pruning). The result shows that our method take less

time than the others. Our proposed method improve
search time up to 30%.

The global threshold proposed in our method is
compared with the threshold of existing method. The
existing method set its initial threshold to 0 and updated
it. Fig. 13 is the search time on c432 benchmark circuit
when the number of critical paths K is set from 20 to 180
and the number of process parameter is set to two. The
global threshold T used in modified K-most critical paths
algorithm more reduces the search space than existing
method. Thus, the global threshold T presented in the
modified K-most critical paths algorithm is efficient and
fast when we find the K-most critical paths. Also the
modified K-most critical paths algorithm is more
efficient in multi-corner multi-mode scenario.

To show the efficiency of the proposed method, we
compared a global threshold T presented in this paper
with existing methods. Existing methods that include
original K-critical path generally use a threshold T as
zero or n% delay of critical path. The number of pruning

Table 1. The run time of the proposed method compared to
breadth-first search (BFS) and depth-first search (DFS), with
K=100

Run time for Critical Path Search (sec) , K=100
ISCAS’85
CIRCUIT

BFS
with
B&B

DFS
with
B&B

Proposed
Method Improvement (%)

C432 5.983 6.415 4.193 29.92% 34.64%
C499 5.366 5.234 3.466 35.41% 33.78%
C880 5.817 5.909 5.317 8.60% 10.02%
C1355 5.292 5.532 3.592 32.12% 35.07%
C1908 14.328 15.433 10.428 27.22% 32.43%
C2670 18.439 18.638 12.439 32.54% 33.26%

Se
ar

ch
 T

im
e

(s
ec

)

Fig. 13. The global threshold T used in modified K-most
critical paths algorithm.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.16, NO.6, DECEMBER, 2016 779

happened during traversing a graph is small in existing
methods. Therefore, they are time-consuming and it is
difficult to predict search time. Fig. 13 represents the
number of pruning operation used in modified K-most
critical paths algorithm according to the number of
corners when K is one hundred at c432. The number of
pruning in proposed method is smaller than existing
methods based on DFS with pruning. Also, as the corners
increased, our method is fast and efficient.

In Table 2, to prove this, we applied our method to
circuits in multi-corner multi-mode and compared the
run-time in our method with breadth first search with
branch and bound (BFSB&B) and depth first search with
branch and bound (DFSB&B). The number of corners is
set to 24 and 26. The number of paths to find K is
arbitrarily set to 100 and 120. The proposed method
reduces more search space than other methods. Through
this experiment, as the number of corners increased, our
method is more efficient than existing methods. Because
our proposed method assigns initial threshold to Kth
delay of a path among all paths in all the given corners,

the number of pruning in traversal process is more
increased than BFSB&B and DFSB&B. Thus, the results
show that the proposed method reduced the search time
more by approximately 30.36%, 21.58%, compared to
BFSB&B and DFSB&B respectively. Therefore, the
modified K-most critical paths algorithm is faster than
existing methods.

V. CONCLUSIONS

The modified K-most critical paths algorithm in multi-
corner multi-mode is presented. It reduces the search
space through path pruning. Also, to further prune paths,
we propose initial threshold bound that is called global
threshold T and our algorithm uses the global threshold T
that is obtained in multi-corner multi-mode scenario.
Thus, we can quickly extract the K-most critical paths in
MCMM scenario and reduce the time required to analyze
circuits. The experiment results demonstrate that the
proposed method reduces the search time by up to
30.36% than existing methods.

ACKNOWLEDGMENTS

This research was supported by the MISP, Korea, under
the National Program for SW in Excellence (R7718-16-
1004) supervised by the IITP and supported by IDEC(MPW,
EDA Tool). Also, we thank Samsung Electronics LSI team
for their support with the research grant.

REFERENCES

[1] Y. C. Ju and R. A. Saleh, “Incremental techniques
for the identification of statically sensitizable

Table 2. Critical path search time in MCMM scenario

Run time for Critical Path Search (sec)
K=100, No. of corners = 24 K=100, No. of corners = 26 K=120, No. of corners = 26 ISCAS’85

CIRCUIT BFS
with
B&B

DFS
with
B&B

Proposed
Method

Improvement
(%)

BFS
with
B&B

DFS
with
B&B

Proposed
Method

Improvement
(%)

BFS
with
B&B

DFS
with
B&B

Proposed
Method

Improvement
(%)

C432 26.72 25.21 22.31 16.51 11.50 38.21 37.30 29.67 22.35 20.47 47.41 44.43 35.04 26.11 21.14
C499 35.76 33.14 24.27 32.13 26.76 47.14 40.10 32.28 31.52 19.49 60.91 48.95 38.13 37.41 22.11
C880 45.97 38.72 31.85 30.71 17.73 58.14 48.97 38.18 34.34 22.03 69.54 55.47 46.53 33.09 16.12
C1355 57.75 54.49 39.42 31.75 27.65 78.59 66.64 53.34 32.13 19.96 88.19 75.37 64.54 26.82 14.37
C1908 77.62 73.23 56.64 27.03 22.65 101.00 97.40 70.37 30.33 27.75 113.67 117.85 97.18 14.50 17.54
C2670 98.24 94.38 77.46 21.16 17.93 140.48 120.03 96.28 31.47 19.79 172.76 140.46 112.74 34.74 19.73

Average - 26.55 20.70 - 30.36 21.58 - 28.78 18.50

Fig. 14. Thu number of pruning operation used in modified K-
most critical paths algorithm according to the number of
corners (K=100) at c432 circuit.

780 DEOK-KEUN OH et al : EXTRACTING THE K-MOST CRITICAL PATHS IN MULTI-CORNER MULTI-MODE FOR FAST …

critical paths,” in Proc. ACM/IEEE Design
Automation Conf., pp. 541–546, 1991.

[2] L. Liu, D. Du, and H.-C. Chen, “An efficient
parallel critical path algorithm,” IEEE Trans.
Computer-Aided Design Integr. Circuits Syst., Vol.
13, No. 7, pp. 909–919, Jul. 1994.

[3] L. Xie and A. Davoodi, “Bound-based statistically-
critical path extraction under process variations,”
IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., Vol. 30, No. 1, pp. 59–71, Jan. 2011.

[4] K. Heloue et al., “Efficient block-based
parameterized timing analysis covering all
potentially critical paths,” IEEE Trans. on CAD,
Vol. 31, pp. 472–484, 2012.

[5] S. H. C. Yen, D. C. Du, and S. Ghanta, “Efficient
Algorithms for extracting the K most critical paths
in timing analysis,” 26th ACM/IEEE Design
Automation Conference, pp. 649-654, June 1989.

[6] W. Qiu and D. M. H. Walker, “An efficient
algorithm for finding the k longest testable paths
through each gate in a combinational circuit,” in
Proc. IEEE Int. Test Conf., pp. 592–601, Oct. 2003.

[7] J. Bhasker and R. Chadha, Static Timing Analysis
for Nanometer Designs: A Practical Approach (1st
ed.), New York, NY: Springer Science & Business
Media, 2009.

[8] C. Visweswariah, K. Ravindran, K. Kalafala, S.
Walker, and S. Narayan, “First-order incremental
block-based statistical timing analysis” in Proc.
Des. Autom. Conf., pp. 331–336, Jun. 2004.

[9] H. Chang and S. S. Sapatnekar, “Statistical timing
analysis considering spatial correlations using a single
PERT-like traversal,” in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Des., pp. 621–625, Nov. 2003.

[10] S. V. Kumar et al., “A Framework for Block-Based
Timing Sensitivity Analysis,” in Proc. Des. Autom.
Conf, pp. 688-693, Jun.2008.

[11] L. M. Silveira and J. R. Phillips. “Efficient computation
of the worst-delay corner,” in Proc. Design Automation
and Test in Europe, pp. 1617–1622, 2007.

[12] H. Li Z. He T. Lv and X. Li. "Test path selection
for capturing delay failures under statistical timing
model," IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., Vol. 21, No. 7, pp.1210-1219, 2013.

[13] S. Onaissi and F. N. Najm, “A linear-time approach
for static timing analysis covering all process corners,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.,

Vol. 27, No. 7, pp. 1291–1304, Jul. 2008.
[14] J. J. Nian, S. H. Tsai, and C. Y. Huang. “A unified

multi-corner multi-mode static timing analysis
engine,” in ASP-DAC, pp. 669–674, 2010.

[15] Predictive Technology Model, downloaded from
http://ptm.asu.edu/.

[16] N. R. Vempaty, V. Kumar and R. E. Korf, “Depth-
first vs best-first search,” in: Proceedings AAAI-91,
Anaheim, CA, 434-440, 1991

[17] W. Zhang, State-Space Search: Algorithms,
Complexity, Extensions, and Applications, Springer,
New York, NY, 1999.

Deok-Keun Oh received the B.S.
degree and Master degree in Computer
Science and Engineering from
Sogang University, Korea in 2012
and 2014. He is currently pursuing a
Ph.D degree in Computer Science
and Engineering at Sogang Univer-

sity, Korea. His research interests are variation-aware
timing analysis, clock tree synthesis, Monte-Carlo
analysis, design for reliability enhancement.

Myeoung-Woo Jin received the B.S.
degree and Master degree in
Computer Science and Engineering
from Sogang University, Korea in
2012 and 2014. He is currently
pursuing a Ph.D degree in Computer
Science and Engineering at Sogang

University, Korea. His research interests are variation-
aware timing analysis, design for reliability enhancement,
interconnect variation.

Ju-Ho Kim received B.S degree and
Ph.D degree in Computer and
Information Science from University
of Minnesota in 1987 and 1995,
respectively. After getting Ph.D
egree, he worked as a senior member
of technical staff at Cadence Design

System until 1997. Professor Kim joined the department
of computer science and engineering in Sogang
University, Seoul, Korea in 1997, and he was a department
chair from 2005 to 2008. His research interests are
variation-aware timing anaysis, low power design.

