• Title/Summary/Keyword: On-line Learning

Search Result 850, Processing Time 0.027 seconds

DoS/DDoS attacks Detection Algorithm and System using Packet Counting (패킷 카운팅을 이용한 DoS/DDoS 공격 탐지 알고리즘 및 이를 이용한 시스템)

  • Kim, Tae-Won;Jung, Jae-Il;Lee, Joo-Young
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.4
    • /
    • pp.151-159
    • /
    • 2010
  • Currently, by using the Internet, We can do varius things such as Web surfing, email, on-line shopping, stock trading on your home or office. However, as being out of the concept of security from the beginning, it is the big social issues that malicious user intrudes into the system through the network, on purpose to steal personal information or to paralyze system. In addition, network intrusion by ordinary people using network attack tools is bringing about big worries, so that the need for effective and powerful intrusion detection system becomes very important issue in our Internet environment. However, it is very difficult to prevent this attack perfectly. In this paper we proposed the algorithm for the detection of DoS attacks, and developed attack detection tools. Through learning in a normal state on Step 1, we calculate thresholds, the number of packets that are coming to each port, the median and the average utilization of each port on Step 2. And we propose values to determine how to attack detection on Step 3. By programing proposed attack detection algorithm and by testing the results, we can see that the difference between the median of packet mounts for unit interval and the average utilization of each port number is effective in detecting attacks. Also, without the need to look into the network data, we can easily be implemented by only using the number of packets to detect attacks.

Role of soy lecithin combined with soy isoflavone on cerebral blood flow in rats of cognitive impairment and the primary screening of its optimum combination

  • Hongrui Li;Xianyun Wang;Xiaoying Li;Xueyang Zhou;Xuan Wang;Tiantian Li;Rong Xiao;Yuandi Xi
    • Nutrition Research and Practice
    • /
    • v.17 no.2
    • /
    • pp.371-385
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Soy isoflavone (SIF) and soy lecithin (SL) have beneficial effects on many chronic diseases, including neurodegenerative diseases. Regretfully, there is little evidence to show the combined effects of these soy extractives on the impairment of cognition and abnormal cerebral blood flow (CBF). This study examined the optimal combination dose of SIF + SL to provide evidence for improving CBF and protecting cerebrovascular endothelial cells. MATERIALS/METHODS: In vivo study, SIF50 + SL40, SIF50 + SL80 and SIF50 + SL160 groups were obtained. Morris water maze, laser speckle contrast imaging (LSCI), and hematoxylin-eosin staining were used to detect learning and memory impairment, CBF, and damage to the cerebrovascular tissue in rat. The 8-hydroxy-2'-deoxyguanosine (8-OHdG) and the oxidized glutathione (GSSG) were detected. The anti-oxidative damage index of superoxide dismutase (SOD) and glutathione (GSH) in the serum of an animal model was also tested. In vitro study, an immortalized mouse brain endothelial cell line (bEND.3 cells) was used to confirm the cerebrovascular endothelial cell protection of SIF + SL. In this study, 50 µM of Gen were used, while the 25, 50, or 100 µM of SL for different incubation times were selected first. The intracellular levels of 8-OHdG, SOD, GSH, and GSSG were also detected in the cells. RESULTS: In vivo study, SIF + SL could increase the target crossing times significantly and shorten the total swimming distance of rats. The CBF in the rats of the SIF50 + SL40 group and SIF50 + SL160 group was enhanced. Pathological changes, such as attenuation of the endothelium in cerebral vessels were much less in the SIF50 + SL40 group and SIF50 + SL160 group. The 8-OHdG was reduced in the SIF50 + SL40 group. The GSSG showed a significant decrease in all SIF + SL pretreatment groups, but the GSH showed an opposite result. SOD was upregulated by SIF + SL pretreatment. Different combinations of Genistein (Gen)+SL, the secondary proof of health benefits found in vivo study, showed they have effective anti-oxidation and less side reaction on protecting cerebrovascular endothelial cell. SIF50 + SL40 in rats experiment and Gen50 + SL25 in cell test were the optimum joint doses on alleviating cognitive impairment and regulating CBF through protecting cerebrovascular tissue by its antioxidant activity. CONCLUSIONS: SIF+SL could significantly prevent cognitive defect induced by β-Amyloid through regulating CBF. This kind of effect might be attributed to its antioxidant activity on protecting cerebral vessels.

Usage and Analysis on Readability of Korean Typography in WBI for Children (효과적인 아동용 WBI를 위한 한글 타이포그래피의 가해성 분석과 활용)

  • Han, Jeong-Hye;Kim, Yong-Dae
    • Journal of The Korean Association of Information Education
    • /
    • v.6 no.3
    • /
    • pp.328-337
    • /
    • 2002
  • Looking at multimedia education contents from a design point of view, the instructor's design model may differ from the child's understanding model due to gap of the instructor's and child's knowledge. This fact implies it impacts the effectiveness of the education contents. The learning efficiency of Korean typography in WBI for children depends on the font-family, line space, font-size, the age of user, the output device such as the monitor, and other various factors. In this paper, we measured and analyzed on readability of Korean typography in WBI for children by reading speed method. The results of experiments show that readability depends on the font-family of typography, age(grade), and sex of children. In detail, "Goolymche" has the shortest time to be read, and girl and the highest grade students of elementary school have shorter time than boy and the lower grade students. Moreover, we consider the elegance of typography in WBI for holding children's interests because they prefer "Yopseoche". We provide some CSSs in WBI for children based on the experimental results, to used in school fields.

  • PDF

Major Class Recommendation System based on Deep learning using Network Analysis (네트워크 분석을 활용한 딥러닝 기반 전공과목 추천 시스템)

  • Lee, Jae Kyu;Park, Heesung;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.95-112
    • /
    • 2021
  • In university education, the choice of major class plays an important role in students' careers. However, in line with the changes in the industry, the fields of major subjects by department are diversifying and increasing in number in university education. As a result, students have difficulty to choose and take classes according to their career paths. In general, students choose classes based on experiences such as choices of peers or advice from seniors. This has the advantage of being able to take into account the general situation, but it does not reflect individual tendencies and considerations of existing courses, and has a problem that leads to information inequality that is shared only among specific students. In addition, as non-face-to-face classes have recently been conducted and exchanges between students have decreased, even experience-based decisions have not been made as well. Therefore, this study proposes a recommendation system model that can recommend college major classes suitable for individual characteristics based on data rather than experience. The recommendation system recommends information and content (music, movies, books, images, etc.) that a specific user may be interested in. It is already widely used in services where it is important to consider individual tendencies such as YouTube and Facebook, and you can experience it familiarly in providing personalized services in content services such as over-the-top media services (OTT). Classes are also a kind of content consumption in terms of selecting classes suitable for individuals from a set content list. However, unlike other content consumption, it is characterized by a large influence of selection results. For example, in the case of music and movies, it is usually consumed once and the time required to consume content is short. Therefore, the importance of each item is relatively low, and there is no deep concern in selecting. Major classes usually have a long consumption time because they have to be taken for one semester, and each item has a high importance and requires greater caution in choice because it affects many things such as career and graduation requirements depending on the composition of the selected classes. Depending on the unique characteristics of these major classes, the recommendation system in the education field supports decision-making that reflects individual characteristics that are meaningful and cannot be reflected in experience-based decision-making, even though it has a relatively small number of item ranges. This study aims to realize personalized education and enhance students' educational satisfaction by presenting a recommendation model for university major class. In the model study, class history data of undergraduate students at University from 2015 to 2017 were used, and students and their major names were used as metadata. The class history data is implicit feedback data that only indicates whether content is consumed, not reflecting preferences for classes. Therefore, when we derive embedding vectors that characterize students and classes, their expressive power is low. With these issues in mind, this study proposes a Net-NeuMF model that generates vectors of students, classes through network analysis and utilizes them as input values of the model. The model was based on the structure of NeuMF using one-hot vectors, a representative model using data with implicit feedback. The input vectors of the model are generated to represent the characteristic of students and classes through network analysis. To generate a vector representing a student, each student is set to a node and the edge is designed to connect with a weight if the two students take the same class. Similarly, to generate a vector representing the class, each class was set as a node, and the edge connected if any students had taken the classes in common. Thus, we utilize Node2Vec, a representation learning methodology that quantifies the characteristics of each node. For the evaluation of the model, we used four indicators that are mainly utilized by recommendation systems, and experiments were conducted on three different dimensions to analyze the impact of embedding dimensions on the model. The results show better performance on evaluation metrics regardless of dimension than when using one-hot vectors in existing NeuMF structures. Thus, this work contributes to a network of students (users) and classes (items) to increase expressiveness over existing one-hot embeddings, to match the characteristics of each structure that constitutes the model, and to show better performance on various kinds of evaluation metrics compared to existing methodologies.

Perceptions of Primary Caregivers of Children With Developmental Disabilities on Tele-music Program During COVID-19 (COVID-19 이후 학령기 발달장애 아동 주양육자의 비대면 음악프로그램 참여 현황 및 인식 조사)

  • Kim, So Hee
    • Journal of Music and Human Behavior
    • /
    • v.18 no.1
    • /
    • pp.1-27
    • /
    • 2021
  • The purpose of this study was to investigate how primary caregivers of children with developmental disabilities aged 6 to 18 years perceived on tele-music programs in which their children participated during COVID-19. A total of 83 caregivers who voluntarily agreed to participate in this study responded to a survey either on-line or in person and 67 questionnaires were included in the final analysis after deleting 16 incomplete responses. The results showed that tele-music programs were rated somewhat suitable for distance learning but that there was still a need for adult assistance to help children with developmental disabilities participate in the program. When comparing the perceptions of caregivers who participated in remote general education versus who participated in tele-music program, significantly higher level of program engagement and positive responses from a child were perceived with tele-music program. The caregivers who participated in tele-music program showed significantly greater willingness to participate in tele-music therapy in the future than those who did not. The findings of this study presents information on how tele-music therapy has been implemented to children with disabilities and what can be considered for the the development of a tele-music therapy program.

A Study on the Development Direction of Medical Image Information System Using Big Data and AI (빅데이터와 AI를 활용한 의료영상 정보 시스템 발전 방향에 대한 연구)

  • Yoo, Se Jong;Han, Seong Soo;Jeon, Mi-Hyang;Han, Man Seok
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.9
    • /
    • pp.317-322
    • /
    • 2022
  • The rapid development of information technology is also bringing about many changes in the medical environment. In particular, it is leading the rapid change of medical image information systems using big data and artificial intelligence (AI). The prescription delivery system (OCS), which consists of an electronic medical record (EMR) and a medical image storage and transmission system (PACS), has rapidly changed the medical environment from analog to digital. When combined with multiple solutions, PACS represents a new direction for advancement in security, interoperability, efficiency and automation. Among them, the combination with artificial intelligence (AI) using big data that can improve the quality of images is actively progressing. In particular, AI PACS, a system that can assist in reading medical images using deep learning technology, was developed in cooperation with universities and industries and is being used in hospitals. As such, in line with the rapid changes in the medical image information system in the medical environment, structural changes in the medical market and changes in medical policies to cope with them are also necessary. On the other hand, medical image information is based on a digital medical image transmission device (DICOM) format method, and is divided into a tomographic volume image, a volume image, and a cross-sectional image, a two-dimensional image, according to a generation method. In addition, recently, many medical institutions are rushing to introduce the next-generation integrated medical information system by promoting smart hospital services. The next-generation integrated medical information system is built as a solution that integrates EMR, electronic consent, big data, AI, precision medicine, and interworking with external institutions. It aims to realize research. Korea's medical image information system is at a world-class level thanks to advanced IT technology and government policies. In particular, the PACS solution is the only field exporting medical information technology to the world. In this study, along with the analysis of the medical image information system using big data, the current trend was grasped based on the historical background of the introduction of the medical image information system in Korea, and the future development direction was predicted. In the future, based on DICOM big data accumulated over 20 years, we plan to conduct research that can increase the image read rate by using AI and deep learning algorithms.

A System Dynamics Approach for Modeling Cognitive Process of Construction Workers'Unsafe Behaviors (시스템 다이내믹스를 이용한 건설 작업자의 불안전한 행동의 인지 과정 모델링)

  • Kim, Jinwoo;Lee, Hyunsoo;Park, Moonseo;Kwon, Nahyun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.18 no.2
    • /
    • pp.38-48
    • /
    • 2017
  • Finding causes of workers' unsafe behaviors is important to prevent construction accidents because 80 percent of accidents occur by workers' unsafe behaviors. In this regard, this research aims to investigate possible reasons of workers' unsafe behaviors based on workers' cognitive process model using System dynamics. This study is based on two ways of workers' cognitive process which are in relation to hazard perception and failure of hazard perception. Based on existing literature, causal loops for workers' cognitive process are developed to explain workers' habituation by staying out of accidents, safety learning by experience, failure of hazard perception, and attitude change by accidents. The interactions between the developed loops provide managerial insights to reduce workers' unsafe behaviors from a safety manager's perspective including increasing the probability of workers' hazard perception through knowledge management, maintaining workers' positive attitude toward safety, and controlling first-line supervisors to eliminate workers' unsafe behavior. The research allows us to better understand the causes and solutions of workers' unsafe behaviors in workers' cognitive perspectives.

Entry, Exit, and Aggregate Productivity Growth: Evidence on Korean Manufacturing (진입·퇴출의 창조적 파괴과정과 총요소생산성 증가에 대한 실증분석)

  • Hahn, Chin Hee
    • KDI Journal of Economic Policy
    • /
    • v.25 no.2
    • /
    • pp.3-53
    • /
    • 2003
  • Using the plant level panel data on Korean manufacturing during 1990-98 period, this study tries to assess the role of entry and exit in enhancing aggregate productivity, both qualitatively and quantitatively. Main findings of this study are summarized as follows. First, plant entry and exit rates in Korean manufacturing seem quite high: they are higher than in the U.S. or several developing countries for which comparable studies exist. Second, in line with existing studies on other countries, plant turnovers reflect underlying productivity differential in Korean manufacturing, with the "shadow of death" effect as well as selection and learning effects all present. Third, plant entry and exit account for as much as 45 and 65 percent in manufacturing productivity growth during cyclical upturn and downturn, respectively. The findings of this study show that the entry and exit of plants has been an important source of productivity growth in Korean manufacturing. Plant birth and death are mainly a process of resource reallocation from plants with relatively low and declining productivity to a group of heterogeneous plants, some of which have the potential to become highly efficient in future. The most obvious lesson from this study is that it is important to establish policy or institutional environment where efficient businesses can succeed and inefficient businesses fail.

  • PDF

Design Plan for Digital Textbooks Applying Augmented Reality Image Recognition Technology -A Study on the Digital Textbooks for Middle School Science 1- (증강현실(AR) 영상인식 기술을 적용한 디지털 교과서 디자인 기획 -중학교 과학1 디지털 교과서 중심으로-)

  • Yoo, Young-Mi;Jo, Seong-Hwan
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.6
    • /
    • pp.353-363
    • /
    • 2018
  • According to the Digi Capital forecast, the global augmented reality market is expected to grow rapidly by 2020 to reach 150 billion dollars. In particular, high value added effects are expected in education. As ICT advances, digital textbooks are also leading innovative education by adding interactive functions. Advanced countries, including the U.S., are already using digital textbooks that use augmented reality technology in their classes. In line with this technological outlook, the ministry proposed a design plan that applies augmented reality technology to middle school science 1 digital textbooks. A study on middle school science 1 digital textbooks showed that each unit provided short videos. In addition, an investigation into the augmented reality class case showed that it was difficult to establish experimental equipment, lack of equipment (devices), and 3D design contents that did not continue despite the excellence of learning effects. Based on this demand, we designed an augmented reality scenario and system configuration to be applied to the instrument-specific experiments of middle school science 1 digital textbooks to explore and explore the contents of augmented reality by students. This research will replace the dangerous experiments and time consuming experiments for teachers and students by applying augmented reality to science subjects that are essential for the development of digital textbooks.

Development on Identification Algorithm of Risk Situation around Construction Vehicle using YOLO-v3 (YOLO-v3을 활용한 건설 장비 주변 위험 상황 인지 알고리즘 개발)

  • Shim, Seungbo;Choi, Sang-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.622-629
    • /
    • 2019
  • Recently, the government is taking new approaches to change the fact that the accident rate and accident death rate of the construction industry account for a high percentage of the whole industry. Especially, it is investing heavily in the development of construction technology that is fused with ICT technology in line with the current trend of the 4th Industrial Revolution. In order to cope with this situation, this paper proposed a concept to recognize and share the work situation information between the construction machine driver and the surrounding worker to enhance the safety in the place where construction machines are operated. In order to realize the part of the concept, we applied image processing technology using camera based on artificial intelligence to earth-moving work. Especially, we implemented an algorithm that can recognize the surrounding worker's circumstance and identify the risk situation through the experiment using the compaction equipment. and image processing algorithm based on YOLO-v3. This algorithm processes 15.06 frames per second in video and can recognize danger situation around construction machine with accuracy of 90.48%. We will contribute to the prevention of safety accidents at the construction site by utilizing this technology in the future.