• Title/Summary/Keyword: On-Chip Memory

Search Result 296, Processing Time 0.03 seconds

Design of FPGA in Power Control Unit for Control Rod Control System (원자로 제어봉 구동장치 제어시스템용 전력제어기 FPGA 설계)

  • Lee, Jong-Moo;Shin, Jong-Ryeol;Kim, Choon-Kyung;Park, Min-Kook;Kwon, Soon-Man
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.563-566
    • /
    • 2003
  • We have designed the power control unit which belongs to the power cabinet and controls the power supplied to Control Rod Drive Mechanism(CRDM) as a digital system based on Digital Signal Processor(DSP). The power control unit dualized as the form of Master/Slave has had its increased reality. The Central Process Unit(CPU) board of a power control unit possesses two Digital Signal Processors(DSPs) of the control DSP for performing the tasks of power control and system monitoring and the communication of the Control DSP and the Communication DSP. To accomplish the functions requested in the power control unit effectively, we have installed Field Programmable Gate Arrays(FPGAS) on the CPU board and have FPGAs perform the memory mapping, the generation of each chip selection signal, the giving and receiving of the signals between the power controllers dualized, the fault detection and the generation of the firing signals.

  • PDF

Design of a Capacitive Detection Circuit using MUX and DLC based on a vMOS (vMOS 기반의 DLC와 MUX를 이용한 용량성 감지회로)

  • Jung, Seung-Min
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.4
    • /
    • pp.63-69
    • /
    • 2012
  • This paper describes novel scheme of a gray scale capacitive fingerprint image for high-accuracy capacitive sensor chip. The typical gray scale image scheme used a DAC of big size layout or charge-pump circuit of non-volatile memory with high power consumption and complexity by a global clock signal. A modified capacitive detection circuit of charge sharing scheme is proposed, which uses DLC(down literal circuit) based on a neuron MOS(vMOS) and analog simple multiplexor. The detection circuit is designed and simulated in 3.3V, $0.35{\mu}m$ standard CMOS process. Because the proposed circuit does not need a comparator and peripheral circuits, a pixel layout size can be reduced and the image resolution can be improved.

A High Accuracy and Fast Hybrid On-Chip Temperature Sensor (고정밀 고속 하이브리드 온 칩 온도센서)

  • Kim, Tae-Woo;Yun, Jin-Guk;Woo, Ki-Chan;Hwang, Seon-Kwang;Yang, Byung-Do
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.9
    • /
    • pp.1747-1754
    • /
    • 2016
  • This paper presents a high accuracy and fast hybrid on-chip temperature sensor. The proposed temperature sensor combines a SAR type temperature sensor with a ${\Sigma}{\Delta}$ type temperature sensor. The SAR type temperature sensor has fast temperature searching time but it has more error than the ${\Sigma}{\Delta}$ type temperature sensor. The ${\Sigma}{\Delta}$ type temperature sensor is accurate but it is slower than the SAR type temperature sensor. The proposed temperature sensor uses both the SAR and ${\Sigma}{\Delta}$ type temperature sensors, so that the proposed temperature sensor has high accuracy and fast temperature searching. Also, the proposed temperature sensor includes a temperature error compensating circuit by storing the temperature errors in a memory circuit after chip fabrication. The proposed temperature sensor was fabricated in 3.3V CMOS $0.35{\mu}m$ process. Its temperature resolution, power consumption, and area are $0.15^{\circ}C$, $540{\mu}W$, and $1.2mm^2$, respectively.

Energy-Performance Efficient 2-Level Data Cache Architecture for Embedded System (내장형 시스템을 위한 에너지-성능 측면에서 효율적인 2-레벨 데이터 캐쉬 구조의 설계)

  • Lee, Jong-Min;Kim, Soon-Tae
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.37 no.5
    • /
    • pp.292-303
    • /
    • 2010
  • On-chip cache memories play an important role in both performance and energy consumption points of view in resource-constrained embedded systems by filtering many off-chip memory accesses. We propose a 2-level data cache architecture with a low energy-delay product tailored for the embedded systems. The L1 data cache is small and direct-mapped, and employs a write-through policy. In contrast, the L2 data cache is set-associative and adopts a write-back policy. Consequently, the L1 data cache is accessed in one cycle and is able to provide high cache bandwidth while the L2 data cache is effective in reducing global miss rate. To reduce the penalty of high miss rate caused by the small L1 cache and power consumption of address generation, we propose an ECP(Early Cache hit Predictor) scheme. The ECP predicts if the L1 cache has the requested data using both fast address generation and L1 cache hit prediction. To reduce high energy cost of accessing the L2 data cache due to heavy write-through traffic from the write buffer laid between the two cache levels, we propose a one-way write scheme. From our simulation-based experiments using a cycle-accurate simulator and embedded benchmarks, the proposed 2-level data cache architecture shows average 3.6% and 50% improvements in overall system performance and the data cache energy consumption.

Large Scale Directed Assembly of SWNTs and Nanoparticles for Electronics and Biotechnology

  • Busnaina, Ahmed;Smith, W.L.
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.9-9
    • /
    • 2011
  • The transfer of nano-science accomplishments into technology is severely hindered by a lack of understanding of barriers to nanoscale manufacturing. The NSF Center for High-rate Nanomanufacturing (CHN) is developing tools and processes to conduct fast massive directed assembly of nanoscale elements by controlling the forces required to assemble, detach, and transfer nanoelements at high rates and over large areas. The center has developed templates with nanofeatures to direct the assembly of carbon nanotubes and nanoparticles (down to 10 nm) into nanoscale trenches in a short time (in seconds) and over a large area (measured in inches). The center has demonstrated that nanotemplates can be used to pattern conducting polymers and that the patterned polymer can be transferred onto a second polymer substrate. Recently, a fast and highly scalable process for fabricating interconnects from CMOS and other types of interconnects has been developed using metallic nanoparticles. The particles are precisely assembled into the vias from the suspension and then fused in a room temperature process creating nanoscale interconnect. The center has many applications where the technology has been demonstrated. For example, the nonvolatile memory switches using (SWNTs) or molecules assembled on a wafer level. A new biosensor chip (0.02 $mm^2$) capable of detecting multiple biomarkers simultaneously and can be in vitro and in vivo with a detection limit that's 200 times lower than current technology. The center has developed the fundamental science and engineering platform necessary to manufacture a wide array of applications ranging from electronics, energy, and materials to biotechnology.

  • PDF

Development and Application of a Miniature Stereo-PIV System (Miniature Stereo-PIV 시스템의 개발과 응용)

  • Kim, K.C.;Chetelat, Olivier;Kim, S.H.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.11
    • /
    • pp.1637-1644
    • /
    • 2003
  • Stereoscopic particle image velocimetry is a measurement technique to acquire three dimensional velocity field by two cameras. With a laser sheet illumination, the third velocity component can be deduced from out-of$.$plane velocity components using a stereoscopic matching method. Most industrial fluid flows are three dimensional turbulent flows, so it is necessary to use the stereoscopic PIV measurement method. However the existing stereoscopic PIV system seems hard to use since it is very expensive and complex. In this study we have developed a Miniature Stereo-PIV(MSPIV) system based on the concept of the Miniature PIV system which we have already developed. In this paper, we address the design and some primitive experimental results of the Miniature Stereo-PIV system. The Miniature Stereo-PIV system features relatively modest performances, but is considerably smaller, cheaper and easy to handle. The proposed Miniature Stereo-PIV system uses two one-chip-only CMOS cameras with digital output. Only two other chips are needed, one for a buffer memory and one for an interfacing logic that controls the system. Images are transferred to a personal computer (PC) via its standard parallel port. No extra hardware is required (in particular, no frame grabber board is needed).

A compact and low-power consumable device for continuous monitoring of biosignal (소형화 및 저전력소모를 구현한 실시간 생체신호 측정기 개발)

  • Cho, Jung-Hyun;Yoon, Gil-Won
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.334-340
    • /
    • 2006
  • A compact biosignal monitoring device was developed. Electrodes for electrocardiogram (ECG) and a LED and silicon detector for photoplethysmogram (PPG) were used. A lead II type was arranged for ECG measurement and reflected light was measured at the finger tip for PPG. A single chip microprocessor (model ADuC812, Analog Device) controlled a measurement protocol and processed measured signals. PPG and ECG had a sampling rate of 300 Hz with 8-bit resolution. The maximum power consumption was 100 mW. The microprocessor computed pulse transit time (PTT) between the R-wave of ECG and the peak of PPG. To increase the resolution of PTT, analog peak detectors obtained the peaks of ECG and PPG whose interval was calculated using an internal clock cycle of 921.6 kHz. The device was designed to be operated by 3-volt battery. Biosignals can be measured for $2{\sim}3$ days continuously without the external interruptions and data is stored to an on-board memory. Our system was successfully tested with human subjects.

A Novel 3-Level Transceiver using Multi Phase Modulation for High Bandwidth

  • Jung, Dae-Hee;Park, Jung-Hwan;Kim, Chan-Kyung;Kim, Chang-Hyun;Kim, Suki
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.791-794
    • /
    • 2003
  • The increasing computational capability of processors is driving the need for high bandwidth links to communicate and store the information that is processed. Such links are often an important part of multi processor interconnection, processor-to-memory interfaces and Serial-network interfaces. This paper describes a 0.11-${\mu}{\textrm}{m}$ CMOS 4 Gbp s/pin 3-Level transceiver using RSL/(Rambus Signaling Logic) for high bandwidth. This system which uses a high-gain windowed integrating receiver with wide common-mode range which was designed in order to improve SNR when operating with the smaller input overdrive of 3-Level. For multi-gigabit/second application, the data rate is limited by Inter-Symbol Interference (ISI) caused by low pass effects of channel, process-limited on-chip clock frequency, and serial link distance. In order to detect the transmited 4Gbps/pin with 3-Level data sucessfully ,the receiver is designed using 3-stage sense amplifier. The proposed transceiver employes multi-level signaling (3-Level Pulse Amplitude Modulation) using clock multi phase, double data rate and Prbs patten generator. The transceiver shows data rate of 3.2 ~ 4.0 Gbps/pin with a 1GHz internal clock.

  • PDF

Development of a Stereoscopic Miniature PIV(MPIV) System (Stereoscopic Miniature PIV (MPIV) 시스템의 개발)

  • Kim S.H.;Chete1at O.;Kim K.C.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.517-520
    • /
    • 2002
  • Stereoscopic particle image velocimetry is a measurement technique to acquire of three dimensional velocity field by two cameras. With a laser sheet illumination, the third velocity component can be deduced by out-of-plane velocity components using a stereoscopic matching method. Industrial fluid flows are almost three dimensional turbulent flows, so it is necessary to use the stereoscopic PIV measurement method. However the existing stereoscopic PIV system seems hard to use since it is very expensive and complex. In this study we have developed a Stereoscopic Miniature PIV(MPIV) system based on the concept of the Miniature PIV system which we have already developed. In this paper, we address the design and some first experimental results of the stereoscopic PIV system. The Stereoscopic MPIV system features relatively modest performances, but is considerably smaller, cheaper and easy to handle. The proposed Stereoscopic MPIV system uses two one-chip-only CMOS cameras with digital output. Only two other chips are needed, one for a buffer memory and one for an interfacing logic that controls the system. Images are transferred to a personal computer (PC) via its standard parallel port. No extra hardware is required (in particular, no frame grabber board is needed).

  • PDF

Current and Future Trends of Smart Card Technology (스마트카드형 교통 카드의 기술 및 미래 동향)

  • Lee, Jung-Joo;Shon, Jung-Chul;Yu, Sin-Cheol
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.535-544
    • /
    • 2008
  • Unlike MS(Magnetic Stripe), SMART CARD is equipped with COS(Chip Operating System) consisting of the Microprocessor and Memory where information can be stored and processed, and there are two types of cards according to the contact mode; the contact type that passes through a gold plated area and the contactless one that goes through the radio-frequency using an antenna embedded in the plastic card. the contactless IC card used for the transportation card was first introduced into local area buses in Seoul, and expanded throughout the country so that it has removed the inconvenience such as possession of cash, fare payment and collection. Focusing on the Seoul metropolitan area in 2004, prepaid and pay later cards were adopted and have been used interchangeably between a bus and subway. The card terminal compatible between a bus and subway is Proximity Integrated Circuit Card(PICC) as international standards(1443 Type A,B), communicates in the 13.56MHz dynamic frequency modulation-demodulation system, and adopts the Multi Secure Application Module(SAM). In the second half of 2009, the system avaliable nationwide will be built when the payment SAM standard is implemented.

  • PDF