• Title/Summary/Keyword: On Resistance

Search Result 21,541, Processing Time 0.055 seconds

A Study on the Optimum Design of Multiple Screw Type Dryer for Treatment of Sewage Sludge (하수슬러지 처리를 위한 다축 스크류 난류 접촉식 건조기의 최적 설계 연구)

  • Na, En-Soo;Shin, Sung-Soo;Shin, Mi-Soo;Jang, Dong-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.4
    • /
    • pp.223-231
    • /
    • 2012
  • The purpose of this study is to investigate basically the mechanism of heat transfer by the resolution of complex fluid flow inside a sophisticated designed screw dryer for the treatment of sewage sludge by using numerical analysis and experimental study. By doing this, the result was quite helpful to obtain the design criteria for enhancing drying efficiency, thereby achieving the optimal design of a multiple screw type dryer for treating inorganic and organic sludge wastes. One notable design feature of the dryer was to bypass a certain of fraction of the hot combustion gases into the bottom of the screw cylinder, by the fluid flow induction, across the delicately designed holes on the screw surface to agitate internally the sticky sludges. This offers many benefits not only in the enhancement of thermal efficiency even for the high viscosity material but also greater flexibility in the application of system design and operation. However, one careful precaution was made in operation in that when distributing the hot flue gas over the lump of sludge for internal agitation not to make any pore blocking and to avoid too much pressure drop caused by inertial resistance across the lump of sludge. The optimal retention time for rotating the screw at 1 rpm in order to treat 200 kg/hr of sewage sludge was determined empirically about 100 minutes. The corresponding optimal heat source was found to be 150,000 kcal/hr. A series of numerical calculation is performed to resolve flow characteristics in order to assist in the system design as function of important system and operational variables. The numerical calculation is successfully evaluated against experimental temperature profile and flow field characteristics. In general, the calculation results are physically reasonable and consistent in parametric study. In further studies, more quantitative data analyses such as pressure drop across the type and loading of drying sludge will be made for the system evaluation in experiment and calculation.

Evaluation of Single and Stacked MFC Performances under Different Dissolved Oxygen Concentrations in Cathode Chamber (환원전극 DO 농도에 따른 단일 및 직렬연결 미생물연료전지 전기발생량 평가)

  • Yu, Jae-Cheul;Lee, Tae-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.4
    • /
    • pp.249-255
    • /
    • 2009
  • The performance of microbial fuel cell (MFC) can be affected by many factors including the rate of organic matter oxidation, the electron transfer to electrode by electrochemical bacteria, proton diffusion, the concentration of electron acceptor, the rate of electron acceptor reduction and internal resistance. the performance of MFC using oxygen as electron acceptor can be influenced by oxygen concentration as limit factors in cathode compartment. Many studies have been performed to enhance electricity production from MFC. The series or parallel stacked MFC connected several MFC units can use to increase voltages and currents produced from MFCs. In this study, a single MFC (S-MFC) and a stacked MFC (ST-MFC) using acetate as electron donor and oxygen as electron acceptor were used to investigate the influence of dissolved oxygen (DO) concentrations in cathode compartment on MFC performance. The power density (W/$m^3$) of S-MFC was in order DO 5 > 3 > 7 > 9 mg/L, the maximum power density (W/$m^3$) of S-MFC was 42 W/$m^3$ at DO 5 mg/L. The power density (W/$m^3$) of ST-MFC was in order DO 5 > 7 > 9 > 3 mg/L and the maximum power density (W/$m^3$) of STMFC was 20 W/$m^3$ at DO 5 mg/L. These results suggest that the DO concentration of cathode chamber should be considered as important limit factor of MFC operation and design for stacked MFC as well as single MFC. The results of ST-MFC operation showed the voltage decrease of some MFC units by salt formation on the surface of anode, resulting in decrease total voltage of ST-MFC. Therefore, connecting MFC units in parallel might be more appropriate way than series connections to enhance power production of stacked MFC.

Expression Patterns of Enzymes in Different Tissues of Oil Seed Rape (Brassica napus L.) Seedling (유료용 유채 유식물의 조직내 효소의 발현 패턴)

  • Song, Yong-Su;Seo, Dong-Jun;Lee, Bok-Rye;Jung, Woo-Jin
    • Journal of Applied Biological Chemistry
    • /
    • v.52 no.2
    • /
    • pp.51-57
    • /
    • 2009
  • To investigate expression patterns of chitinase, ${\beta}$-1,3-glucanase and peroxidase involved in biological control of phytopathogens, three oil seed rapes (Capitol, Pollen and Saturnin) were used. Activities of the enzymes in old leaves were $9.7{\sim}11.8$ unit/mg protein in chitinase, $11.1{\sim}17.3$ unit/mg protein in ${\beta}$-1,3-glucanase and $0.6{\sim}1.7$ unit/mg protein in peroxidase. Activities of the enzymes in roots were $39.2{\sim}49.0$ unit/mg protein in chitinase, $49.9{\sim}62.0$ unit/mg protein in ${\beta}$-1,3-glucanase and $2.4{\sim}3.8$ unit/mg protein in peroxidase. Chitinase and ${\beta}$-1,3-glucanase activity were the highest level in Saturnin leaves and in Capitol roots while activities of those were the lowest level in Capitol leaves. Also, chitinase and ${\beta}$-1,3-glucanase and peroxidase activity were the lowest level in Saturnin roots. Active bands of chitinase isoform in leaves (73, 51, 40, 34, and 29 kDa) and in roots (100, 57 34, and 29 kDa) tissues showed in the SDS-PAGE gel. Active bands of ${\beta}$-1,3-glucanase isoform in leaves and roots (75 and 55 kDa) tissues showed on the SDS-PAGE gel. Active staining of peroxidase showed the strongest level in leaves and roots of Pollen. Active bands of peroxidase isoform in leaves (122, 114, and 93 kDa) and in roots (135, 122, 114, and 93 kDa) tissues showed on the Native-PAGE gel. These results indicated that establishment of expression pattern of enzymes in rape tissues could play as an important role with respect to resistance of plant pathogens in rape.

Effect of Combined Exercise on Lung Function, Blood Vitamin D, Calcium and Bone Metabolism Hormones in Elderly Women (복합운동이 여성노인의 폐기능, 혈중 비타민 D, 칼슘 및 골대사호르몬에 미치는 영향)

  • Ki, Min-Jae;Ha, Soo-Min;Kim, Jung-Sook;Koh, Su-Han;Kim, Ji-Sun;Kim, Do-Yeon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.699-710
    • /
    • 2020
  • The purpose of this study was to investigate the effect of combined exercise on lung function, blood vitamin D, calcium and bone metabolism hormones in elderly women who are over 65 years by dividing them into a combined exercise group(n=13), control group(n=17). The combined exercise program included 60-minutes sessions 3times each week. Aerobic exercise intensity was 40-50%HRR(RPE 12-13) for 1-4 week, 50-60%HRR(RPE 13-14) for 5-8 week, and 60-70%HRR(RPE 14-15) for 9-12 week and resistance exercise intensity was set at OMNI-RES 3-4 for 1-4 week, OMNI-RES 5-6 for 5-8 week, OMNI-RES 7-8 for 9-12 week. As a result, lung function indicated that FEV1 showed an interaction effect between group and time and FVC/FEV1 levels significantly increased in combined exercise group. Blood vitamin D showed an interaction effect between group and time, also, significantly increased in combined exercise group and control group. Calcium showed an interaction effect between group and time, and significantly decreased in control group. Bone metabolism hormones indicated that both calcitonin and osteocalcin showed an interaction effect between group and time, osteocalcin significantly decreased in control group. For the following this conclusion, elderly women can be improved their lung function through 12 weeks combined exercise and also mitigate the blood vitamin D but there was no meaningful results of calcium and bone metabolism hormones.

Research of Diffusion Bonding of Tungsten/Copper and Their Properties under High Heat Flux

  • Li, Jun;Yang, Jianfeng
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.14-14
    • /
    • 2011
  • W (tungsten)-alloys will be the most promising plasma facing armor materials in highly loaded plasma interactive components of the next step fusion reactors due to its high melting point, high sputtering resistance and low deuterium/tritium retention. The bonding technology of tungsten to Cu alloy was one of the key issues. In this paper, W/CuCrZr diffusion bonding has been performed successfully by inserting pure metal interlay. The joint microstructure, interfacial elements migration and phase composition were analyzed by SEM, EDS, XRD, and the joint shear strength and micro-hardness were investigated. The mock-ups were fabricated successfully with diffusion bonding and the cladding technology respectively, and the high heat flux test and thermal fatigue test were carried out under actively cooling condition. When Ni foil was used for the bonding of tungsten to CuCrZr, two reaction layers, Ni4W and Ni(W) layer, appeared between the tungsten and Ni interlayer with the optimized condition. Even though Ni4W is hard and brittle, and the strength of the joint was oppositely increased (217 MPa) due primarily to extremely small thicknesses (2~3 ${\mu}m$). When Ti foil was selected as the interlayer, the Ti foil diffused quickly with Cu and was transformed into liquid phase at $1,000^{\circ}C$. Almost all of the liquid was extruded out of the interface zone under bonding pressure, and an extremely thin residual layer (1~2 ${\mu}m$) of the liquid phase was retained between the tungsten and CuCrZr, which shear strength exceeded 160 MPa. When Ni/Ti/Ni multiple interlayers were used for bonding of tungsten to CuCrZr, a large number of intermetallic compound ($Ni_4W/NiTi_2/NiTi/Ni_3T$) were formed for the interdiffusion among W, Ni and Ti. Therefore, the shear strength of the joint was low and just about 85 MPa. The residual stresses in the clad samples with flat, arc, rectangle and trapezoid interface were estimated by Finite Element Analysis. The simulation results show that the flat clad sample was subjected maximum residual stress at the edge of the interface, which could be cracked at the edge and propagated along the interface. As for the rectangle and trapezoid interface, the residual stresses of the interface were lower than that of the flat interface, and the interface of the arc clad sample have lowest residual stress and all of the residual stress with arc interface were divided into different grooved zones, so the probabilities of cracking and propagation were lower than other interfaces. The residual stresses of the mock-ups under high heat flux of 10 $MW/m^2$ were estimated by Finite Element Analysis. The tungsten of the flat interfaces was subjected to tensile stresses (positive $S_x$), and the CuCrZr was subjected to compressive stresses (negative $S_x$). If the interface have a little microcrack, the tungsten of joint was more liable to propagate than the CuCrZr due to the brittle of the tungsten. However, when the flat interface was substituted by arc interfaces, the periodical residual stresses in the joining region were either released or formed a stress field prohibiting the growth or nucleation of the interfacial cracks. Thermal fatigue tests were performed on the mock-ups of flat and arc interface under the heat flux of 10 $MW/m^2$ with the cooling water velocity of 10 m/s. After thermal cycle experiments, a large number of microcracks appeared at the tungsten substrate due to large radial tensile stress on the flat mock-up. The defects would largely affect the heat transfer capability and the structure reliability of the mock-up. As for the arc mock-up, even though some microcracks were found at the interface of the regions, all microcracks with arc interface were divided into different arc-grooved zones, so the propagation of microcracks is difficult.

  • PDF

Occurrence and Distribution of ALS Inhibiting Herbicide Resistant Paddy Weeds by Using Soil Test in Chungcheongbuk-Do of Republic of Korea (토양검정법을 활용한 충북지역 ALS 저해제 제초제 저항성 논잡초 발생 현황)

  • Lee, Chae Young;Choi, Ye Seul;Lee, Hee Doo;Kim, Young Ho;Hong, Seong Taek;Woo, Sun Hee;Lee, Jeongran
    • Weed & Turfgrass Science
    • /
    • v.7 no.3
    • /
    • pp.181-190
    • /
    • 2018
  • This study was conducted to investigate the occurrence of an acetolactate synthase (ALS) inhibiting herbicide resistant weed on paddy at 289 sites by soil sampling in Chungcheongbuk-Do of Republic of Korea from February to April in 2017. The most dominant weed was Monochoria vaginalis and Echinochloa oryzicola on each city and county. ALS inhibiting herbicide resistant ratio and occurrence area were 80.6% and 28,272 ha, respectively, in Chungcheongbuk-Do which was 3 times than in 5 years ago. The herbicide resistant ratio, Okcheon-Gun was the highest at 93.8%, Chungju-Si, Boeun-Gun, Yeongdong-Gun, Jincheon-Gun and Geosan-Gun were over 80%, Cheongju-Si, Eumseong-Gun and Jeungpyeong-Gun were over 70%. The herbicide resistant area, Cheongju-Si had the largest at 6,957 ha, Chungju-Si was 4,277 ha, Jincheon-Gun and Boeun-Gun was 3,536 ha and 3,282 ha, respectively. By weed, ALS inhibiting herbicide resistant ratio and occurrence area, Monochoria vaginalis was 49%, 17,646 ha, Echinochloa oryzicola 44%, 15,617 ha, Schoenoplectiella juncoides 29%, 10,377 ha, respectively. In all cities and counties of Chungcheongbuk-Do, Monochoria vaginalis and Echinochloa oryzicola are more than 40% resistant to ALS inhibiting herbicides, intensive management is required. The use of sulfonylurea herbicides is increasing, most farmers use herbicides 10 days after transplanting, so management after transplanting is necessary and the occurrence of herbicide resistant weeds should be reduced by alternating herbicide application every year.

Effect of long-term organic matter application on physico-chemical properties in rice paddy soil -2. The effect of some physical properties of paddy field by the long-term application of rice straw and compost (논토양(土壤)의 이화학적(理化學的) 성질(性質)에 미치는 유기물(有機物)의 연용효과(蓮用效果) -II. 생고(生藁) 및 퇴비(堆肥) 연용(蓮用)이 논토양(土壤)의 몇가지 물리적(物理的) 성질(性質)에 미치는 영향(影響))

  • Yoo, Chul-Hyun;Kim, Jong-Gu;Park, Keong-Ho;Kim, Seong-Jo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.21 no.4
    • /
    • pp.373-379
    • /
    • 1988
  • This experiment was carried out to investigate the effects of long-term applications of rice straw and compost on the physical and mechanical properties of paddy fields and the yearly variation of rice yield in Fluvio-Marine plain of Jeonbug series. Amounts of rice straw and compost applied in this experiment were 500kg/10a, 1,000kg/10a respectively, and the nitrogen levels were 0, 15 and 20kg/10a. This experiment were continued for 9 years from 1979 to 1987. The results are summarized as follows: 1. Clay and silt ratios were decreased but versa in sand ratio, by the long-term application of rice straw and compost. 2. Bulk density in the long-term application of organic matter was lower in surface soil of non-application than nitrogen application (15kg/10a) and in rice straw than compost. 3. Solid ratio went down, but liquid and gaseous ratio went up especially, by organic matter application liquid ratio were increased by compost and gaseous ratio were increased by in rice straw. 4. Aggregates of bigger than 2mm were increased by long-term application of organic matter, and the effects was better in rice straw than compost. Accumulative aggregate of 2mm was 66.5% in nitrogen of 15kg/ 10a with rice straw, which showed the increase of 9.1% in comparison with the non-application of nitrogen and organic matter. 5. Liquid limit, plastic limit and plastic index were high in order of rice straw, compost and control, and liquid index was lower in compost than in rice straw. 6. Cole value was higher in vertical than horizontal and highest in the application of rice straw with nitrogen of 15kg/10a. Cone and shearing resistance were lowest in the application of rice straw with nitrogen. In total vertical pressure friction was higher in the long-term application of organic matter than control. 7. The change of yield index was higher in the long-term application of compost than rice straw in non-nitrogen and it showed the yearly competitive variation between the long-term application of compost and rice straw in nitrogen of 10kg/10a. In nitrogen application of 20kg/10a, it was increased from 6th year by rice straw application.

  • PDF

Effects of Unripened Cheese Supplements on Lipid and Antioxidant Status in Hypercholesterolemic SD Rats (고콜레스테롤혈증 흰쥐에서 비숙성치즈의 보충섭취가 지질 및 항산화 체계에 미치는 영향)

  • Seo, Bo-Young;Spengler, Bernhard;Rompp, Andreas;Schober, Yvonne;Yoon, Yoe-Chang;Park, Eun-Ju
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.1
    • /
    • pp.65-72
    • /
    • 2012
  • The aim of this study was to evaluate the effects of unripened cheese supplements on lipid metabolism and antioxidant status in hypercholesterolemic SD rats. Rats were induced to have hypercholesterolemia by feeding them high cholesterol diet (0.5% cholesterol and 0.2% sodium cholate) for 4 weeks and then divided into 2 groups. One group was fed a high cholesterol diet with 5% unripened cheese (URC) daily for 6 weeks, and the other one was fed a high cholesterol diet without 5% unripened cheese (URC) daily for 6 weeks. Significantly-increased plasma total cholesterol (TC), triglycerides (TG), and AST activity because of the high-cholesterol diet were reduced 18.8%, 40.5%, and 33%, respectively, by URC supplementation. Also, URC lowered hepatic total lipids, TCs, and TGs, whereas fecal lipid profiles were not changed by URC. The supplementation of URC resulted in an increase of plasma retinol and ${\alpha}$-tocopherol by 40.5% and 39.2% and leukoytic DNA resistance to oxidative stress by 52.3% compared to hypercholesterolemic control. These results suggest that unripened cheese supplements could exert significant health benefits to those with hypercholesterolemia through ameliorating lipid profiles and antioxidant effects.

Reliability Based Stability Analysis and Design Criteria for Reinforced Concrete Retaining Wall (신뢰성(信賴性) 이론(理論)에 의한 R.C.옹벽(擁壁)의 안정해석(安定解析) 및 설계규준(設計規準))

  • Cho, Tae Song;Cho, Hyo Nam;Chun, Chai Myung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.3
    • /
    • pp.71-86
    • /
    • 1983
  • Current R.C. retaining wall design is bared on WSD, but the reliability based design method is more rational than the WSD. For this reason, this study proposes a reliability based design criteria for the cantilever retaining wall, which is most common type of retaining wall, and also proposes the theoretical bases of nominal safety factors of stability analysis by introducing the reliability theory. The limit state equations of stability analysis and design of each part of cantilever retaining wall are derived and the uncertainty measuring algorithms of each equation are also derived by MFOSM using Coulomb's coefficient of the active earth pressure and Hansen's bearing capacity formula. The levels of uncertainties corresponding to these algorithms are proposed appropriate values considering our actuality. The target reliability indices (overturning: ${\beta}_0$=4.0, sliding: ${\beta}_0$=3.5, bearing capacity: [${\beta}_0$=3.0, design for flexure: [${\beta}_0$=3.0, design for shear: ${\beta}_0$=3.2) are selected as optimal values considering our practice based on the calibration with the current R.C. retaining wall design safety provisions. Load and resistance factors are measured by using the proposed uncertainties and the selected target reliability indices. Furthermore, a set of nominal safety factors, allowable stresses, and allowable shear stresses are proposed for the current WSD design provisions. It may be asserted that the proposed LRFD reliability based design criteria for the R.C. retaining wall may have to be incorporated into the current R.C. design codes as a design provision corresponding to the USD provisions of the current R.C. design code.

  • PDF

Effects of Regular Treadmill Running on GLUT4 Protein of Skeletal Muscle in STZ-diabetic Rats (STZ-당뇨 흰쥐에서 규칙적인 Treadmill운동이 골격근 제 4 형 당수송체에 미치는 영향)

  • Kim, Jong-Yeon;Bae, Hyung-Il;Park, So-Young;Kim, Yong-Woon;Lee, Suck-Kang
    • Journal of Yeungnam Medical Science
    • /
    • v.15 no.2
    • /
    • pp.341-349
    • /
    • 1998
  • The purpose of this study was to investigate the effects of regular treadmill running on GLUT4 protein of skeletal muscle in STZ-diabetic rats. I used 19 male Sprague-Dawley rats weighing 140 to 160 grams. Rats were randomly assigned into normal, diabetes(DM) and DE(DE) groups. The exercise was loaded with treadmill running for 5 days per week during 4 weeks. All experimental procedures were carried out following overnight fasting 48 hours after last exercise. Gain(gm) in body weight in DM rats(822.4) was lowered compared to normal rats(1092.8), and decreased by exercise. Plasma glucose concentration(mg/dl) in DM rats was 1433.1 which is higher than that of normal group of 1036.4. The concentration of DE group was lower than that of DM rats. Plasma insulin concentration(${\mu}U/ml$) of DM and DE rats was significantly lowerd compared to normal rats. There was no difference of plasma concentrations of FFA and HDL cholesterol among noraml, DM and DE groups. Plasma triglyceride concentration(mg/dl) was significantly highered in DM group compared to those of DM group, the concentration of DE group was lower. Glycogen concentration(mg/gm wet weight) of the plantaris muscle in DM and DE groups was significantly reduced compared to normal group. Glucose transporter 4(GLUT4) protein of soleus was analyzed by Western blot. In DM group, the GLUT4 protein level was markdly decreased compared to normal group, but the level was recovered to the level of normal group by 4 weeks treadmill running. In conclusion, the insulin resistance induced by STZ administration was partially improved by 4 weeks physical training in rats.

  • PDF