• Title/Summary/Keyword: Odorant receptor

Search Result 20, Processing Time 0.02 seconds

Mass Spectrometry-Based Screening Platform Reveals Orco Interactome in Drosophila melanogaster

  • Yu, Kate E.;Kim, Do-Hyoung;Kim, Yong-In;Jones, Walton D.;Lee, J. Eugene
    • Molecules and Cells
    • /
    • v.41 no.2
    • /
    • pp.150-159
    • /
    • 2018
  • Animals use their odorant receptors to receive chemical information from the environment. Insect odorant receptors differ from the G protein-coupled odorant receptors in vertebrates and nematodes, and very little is known about their protein-protein interactions. Here, we introduce a mass spectrometric platform designed for the large-scale analysis of insect odorant receptor protein-protein interactions. Using this platform, we obtained the first Orco interactome from Drosophila melanogaster. From a total of 1,186 identified proteins, we narrowed the interaction candidates to 226, of which only two-thirds have been named. These candidates include the known olfactory proteins Or92a and Obp51a. Around 90% of the proteins having published names likely function inside the cell, and nearly half of these intracellular proteins are associated with the endomembrane system. In a basic loss-of-function electrophysiological screen, we found that the disruption of eight (i.e., Rab5, CG32795, Mpcp, Tom70, Vir-1, CG30427, Eaat1, and CG2781) of 28 randomly selected candidates affects olfactory responses in vivo. Thus, because this Orco interactome includes physiologically meaningful candidates, we anticipate that our platform will help guide further research on the molecular mechanisms of the insect odorant receptor family.

Implications of the simple chemical structure of the odorant molecules interacting with the olfactory receptor 1A1

  • Oh, S. June
    • Genomics & Informatics
    • /
    • v.19 no.2
    • /
    • pp.18.1-18.8
    • /
    • 2021
  • G protein–coupled receptors (GPCRs), including olfactory receptors, account for the largest group of genes in the human genome and occupy a very important position in signaling systems. Although olfactory receptors, which belong to the broader category of GPCRs, play an important role in monitoring the organism's surroundings, their actual three-dimensional structure has not yet been determined. Therefore, the specific details of the molecular interactions between the receptor and the ligand remain unclear. In this report, the interactions between human olfactory receptor 1A1 and its odorant molecules were simulated using computational methods, and we explored how the chemically simple odorant molecules activate the olfactory receptor.

Odorant Receptors Containing Conserved Amino Acid Sequences in Transmembrane Domain 7 Display Distinct Expression Patterns in Mammalian Tissues

  • Ryu, Sang Eun;Shim, Tammy;Yi, Ju-Yeon;Kim, So Yeun;Park, Sun Hwa;Kim, Sung Won;Ronnett, Gabriele V.;Moon, Cheil
    • Molecules and Cells
    • /
    • v.40 no.12
    • /
    • pp.954-965
    • /
    • 2017
  • Mammalian genomes are well established, and highly conserved regions within odorant receptors that are unique from other G-protein coupled receptors have been identified. Numerous functional studies have focused on specific conserved amino acids motifs; however, not all conserved motifs have been sufficiently characterized. Here, we identified a highly conserved 18 amino acid sequence motif within transmembrane domain seven (CAS-TM7) which was identified by aligning odorant receptor sequences. Next, we investigated the expression pattern and distribution of this conserved amino acid motif among a broad range of odorant receptors. To examine the localization of odorant receptor proteins, we used a sequence-specific peptide antibody against CAS-TM7 which is specific to odorant receptors across species. The specificity of this peptide antibody in recognizing odorant receptors has been confirmed in a heterologous in vitro system and a rat-based in vivo system. The CAS-TM7 odorant receptors localized with distinct patterns at each region of the olfactory epithelium; septum, endoturbinate and ectoturbinate. To our great interests, we found that the CAS-TM7 odorant receptors are primarily localized to the dorsal region of the olfactory bulb, coinciding with olfactory epithelium-based patterns. Also, these odorant receptors were ectopically expressed in the various non-olfactory tissues in an evolutionary constrained manner between human and rats. This study has characterized the expression patterns of odorant receptors containing particular amino acid motif in transmembrane domain 7, and which led to an intriguing possibility that the conserved motif of odorant receptors can play critical roles in other physiological functions as well as olfaction.

Odorant Stimulation Promotes Survival of Rodent Olfactory Receptor Neurons via PI3K/Akt Activation and Bcl-2 Expression

  • Kim, So Yeun;Yoo, Seung-Jun;Ronnett, Gabriele V;Kim, Eun-Kyoung;Moon, Cheil
    • Molecules and Cells
    • /
    • v.38 no.6
    • /
    • pp.535-539
    • /
    • 2015
  • Olfactory stimulation activates multiple signaling cascades in order to mediate activity-driven changes in gene expression that promote neuronal survival. To date, the mechanisms involved in activity-dependent olfactory neuronal survival have yet to be fully elucidated. In the current study, we observed that olfactory sensory stimulation, which caused neuronal activation, promoted activation of the phosphatidylinositol 3'-kinase (PI3K)/Akt pathway and the expression of Bcl-2, which were responsible for olfactory receptor neuron (ORN) survival. We demonstrated that Bcl-2 expression increased after odorant stimulation both in vivo and in vitro. We also showed that odorant stimulation activated Akt, and that Akt activation was completely blocked by incubation with both a PI3K inhibitor (LY294002) and Akt1 small interfering RNA. Moreover, blocking the PI3K/Akt pathway diminished the odorantinduced Bcl-2 expression, as well as the effects on odorant-induced ORN survival. A temporal difference was noted between the activation of Akt1 and the expression of Bcl-2 following odorant stimulation. Blocking the PI3K/Akt pathway did not affect ORN survival in the time range prior to the increase in Bcl-2 expression, implying that these two events, activation of the PI3K pathway and Bcl-2 induction, were tightly connected to promote post-translational ORN survival. Collectively, our results indicated that olfactory activity activated PI3K/Akt, induced Bcl-2, and promoted long term ORN survival as a result.

Inhaled Volatile Molecules-Responsive TRP Channels as Non-Olfactory Receptors

  • Hyungsup Kim;Minwoo Kim;Yongwoo Jang
    • Biomolecules & Therapeutics
    • /
    • v.32 no.2
    • /
    • pp.192-204
    • /
    • 2024
  • Generally, odorant molecules are detected by olfactory receptors, which are specialized chemoreceptors expressed in olfactory neurons. Besides odorant molecules, certain volatile molecules can be inhaled through the respiratory tract, often leading to pathophysiological changes in the body. These inhaled molecules mediate cellular signaling through the activation of the Ca2+-permeable transient receptor potential (TRP) channels in peripheral tissues. This review provides a comprehensive overview of TRP channels that are involved in the detection and response to volatile molecules, including hazardous substances, anesthetics, plant-derived compounds, and pheromones. The review aims to shed light on the biological mechanisms underlying the sensing of inhaled volatile molecules. Therefore, this review will contribute to a better understanding of the roles of TRP channels in the response to inhaled molecules, providing insights into their implications for human health and disease.

Molecular Docking of Tetrahydrofuran-2-yl Analogues to Porcine Odorant Binding Proteins (pOBP & pPBP) and Binding Interactions (돼지 냄새물질 결합 단백질 (pOBP 및 pPBP)에 대한 Tetrahydrofuran-2-yl 유도체의 분자도킹과 결합 상호작용)

  • Cho, Yun-Gi;Park, Chang-Sik;Sung, Nack-Do
    • Reproductive and Developmental Biology
    • /
    • v.34 no.1
    • /
    • pp.7-13
    • /
    • 2010
  • The binding affinity constants ($p(Od)_{50}$) and molecular docking scores (OS) between porcine odorant binding proteins pOBP (1HQP) and pPBP (1GM6) as receptor and a series of tetrahydrofuran-2-yl (A & B) analogues as substrate, and their interactions were discussed quantitatively using three-dimensional quantitative structure-activity relationship (30-QSAR) models. The statistical qualities of the optimized CoMF A models for pOBP were better than those of the CoMSIA models. The binding affinity constants and OS between substrate and receptor molecules were dependent upon steric and hydrophobic interaction. The DS constants of the substrates into the binding site of OBP (1HQP) were bigger than those of PBP (1GM6). The resulting contour maps produced by the optimized CoMFA model were used to identify the structural features relevant to the binding affinity in binding site of pOBP.

2D-QSAR Analyses on the Binding Affinity Constants of Tetrahydropyrane and Tetrahydrofurane Analogues against Bovine Odorant Binding Protein and Predicted of High Active Molecules (Bovine Ordorant Binding Protein에 대한 Tetrahydropyrane 및 Tetrahydrofurane 유도체들의 결합 친화력 상수에 관한 2D-QSAR 분석과 고활성 분자의 예측)

  • Park, Chang-Sik;Sung, Nack-Do
    • Reproductive and Developmental Biology
    • /
    • v.33 no.3
    • /
    • pp.119-123
    • /
    • 2009
  • The two dimensional quantitative structure-activity relationships (2D-QSARs) models concerning the binding affinity constants ($p[Od.]_{50}$) between 2-cyclohexyltetrahydropyrane and 2-cyclohexyltetrahydrofurane analogues as substrates, and bovine odorant binding protein (bOBP) as receptor were derived by multiple regression analyses method and discussed. The statistical quality of the optimized 2D-QSAR model (5) was good (r=0.907). From the model, the binding affinity constants ($p[Od.]_{50}$) were dependent upon the optimal value ($(TL)_{opt.}$=2.737) of total lipole (TL) of substrate molecules. Based on these findings, the high active compounds predicted by optimized 2D-QSAR model (5) were 2-(dimethylcyclohexyl)tetrahydropyrane molecule and their isomer molecules. The binding affinity constants regarding bOBP of the tetrahydrofuryl-2-yl family compounds were dependent upon the hydrophobicity (logP) of whole substrate molecules. In any case of porcine odorant-binding proteins (pOBP), the constants were dependent upon the hydrophobicity (${\pi}x={\log}P_X-{\log}P_H$) of substituents (R) in substrate molecules. Also, from the optimal values of hydrophobic constant, the hydrophobicity for bOBP influenced ca. twice time bigger (bOBP>pOBP) than that for pOBP.

Odorant G protein-coupled receptors as potential therapeutic targets for adult diffuse gliomas: a systematic analysis and review

  • Cho, Hee Jin;Koo, JaeHyung
    • BMB Reports
    • /
    • v.54 no.12
    • /
    • pp.601-607
    • /
    • 2021
  • Odorant receptors (ORs) account for about 60% of all human G protein-coupled receptors (GPCRs). OR expression outside of the nose has functions distinct from odor perception, and may contribute to the pathogenesis of disorders including brain diseases and cancers. Glioma is the most common adult malignant brain tumor and requires novel therapeutic strategies to improve clinical outcomes. Here, we outlined the expression of brain ORs and investigated OR expression levels in glioma. Although most ORs were not ubiquitously expressed in gliomas, a subset of ORs displayed glioma subtype-specific expression. Moreover, through systematic survival analysis on OR genes, OR51E1 (mouse Olfr558) was identified as a potential biomarker of unfavorable overall survival, and OR2C1 (mouse Olfr15) was identified as a potential biomarker of favorable overall survival in isocitrate dehydrogenase (IDH) wild-type glioma. In addition to transcriptomic analysis, mutational profiles revealed that somatic mutations in OR genes were detected in > 60% of glioma samples. OR5D18 (mouse Olfr1155) was the most frequently mutated OR gene, and OR5AR1 (mouse Olfr1019) showed IDH wild-type-specific mutation. Based on this systematic analysis and review of the genomic and transcriptomic profiles of ORs in glioma, we suggest that ORs are potential biomarkers and therapeutic targets for glioma.

Odorant receptors in cancer

  • Chung, Chan;Cho, Hee Jin;Lee, ChaeEun;Koo, JaeHyung
    • BMB Reports
    • /
    • v.55 no.2
    • /
    • pp.72-80
    • /
    • 2022
  • Odorant receptors (ORs), the largest subfamily of G protein-coupled receptors, detect odorants in the nose. In addition, ORs were recently shown to be expressed in many nonolfactory tissues and cells, indicating that these receptors have physiological and pathophysiological roles beyond olfaction. Many ORs are expressed by tumor cells and tissues, suggesting that they may be associated with cancer progression or may be cancer biomarkers. This review describes OR expression in various types of cancer and the association of these receptors with various types of signaling mechanisms. In addition, the clinical relevance and significance of the levels of OR expression were evaluated. Namely, levels of OR expression in cancer were analyzed based on RNA-sequencing data reported in the Cancer Genome Atlas; OR expression patterns were visualized using t-distributed stochastic neighbor embedding (t-SNE); and the associations between patient survival and levels of OR expression were analyzed. These analyses of the relationships between patient survival and expression patterns obtained from an open mRNA database in cancer patients indicate that ORs may be cancer biomarkers and therapeutic targets.

Development of Olfactory Biosensor Using Olfactory Receptor Proteins Expressed in E. coli

  • Seong, Jong-Hwan;Go, Hwi-Jin;Park, Tae-Hyeon
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.639-642
    • /
    • 2003
  • Olfactory receptor protein ODR10 was expressed in E.coli as fusion protein with GST and His6 Tag. Crude membrane extract of the expressed protein was coated on the surface of quartz crystal microbalance, and the interaction of the ODR10 with several odorants was examined. Although the expression level was very low, quartz crystal microbalance showed that the expressed protein interacted most strongly with diacetyl (butanedione), which is known to bind to the ODR10 protein selectively. The interaction between ODR10 and diacetyl was $5{\sim}10$ times stronger than the interaction between ODR10 and other odorants. Thus, E. coli cells expressing the olfactory receptor protein could be used as an olfactory biosensor. Also, such system could be used to test which olfactory receptor reacts specifically with which odorant molecules, since there has been no cheap and convenient way to test the interaction of olfactory receptors and odorant molecules yet.

  • PDF