Browse > Article
http://dx.doi.org/10.5808/gi.21033

Implications of the simple chemical structure of the odorant molecules interacting with the olfactory receptor 1A1  

Oh, S. June (Department of Pharmacology, Inje University College of Medicine)
Abstract
G protein–coupled receptors (GPCRs), including olfactory receptors, account for the largest group of genes in the human genome and occupy a very important position in signaling systems. Although olfactory receptors, which belong to the broader category of GPCRs, play an important role in monitoring the organism's surroundings, their actual three-dimensional structure has not yet been determined. Therefore, the specific details of the molecular interactions between the receptor and the ligand remain unclear. In this report, the interactions between human olfactory receptor 1A1 and its odorant molecules were simulated using computational methods, and we explored how the chemically simple odorant molecules activate the olfactory receptor.
Keywords
electron transfer; homology modeling; molecular docking; olfactory receptor;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, et al. Crystal structure of rhodopsin: A G protein-coupled receptor. Science 2000;289:739-745.   DOI
2 Kalra S, Mittal A, Gupta K, Singhal V, Gupta A, Mishra T, et al. Analysis of single-cell transcriptomes links enrichment of olfactory receptors with cancer cell differentiation status and prognosis. Commun Biol 2020;3:506.   DOI
3 Chee HK, Yang JS, Joung JG, Zhang BT, Oh SJ. Characteristic molecular vibrations of adenosine receptor ligands. FEBS Lett 2015;589:548-552.   DOI
4 Busetto AG, Hauser A, Krummenacher G, Sunnaker M, Dimopoulos S, Ong CS, et al. Near-optimal experimental design for model selection in systems biology. Bioinformatics 2013;29: 2625-2632.   DOI
5 Wallace IM, O'Sullivan O, Higgins DG, Notredame C. M-Coffee: combining multiple sequence alignment methods with T-Coffee. Nucleic Acids Res 2006;34:1692-1699.   DOI
6 Webb B, Sali A. Comparative protein structure modeling using MODELLER. Curr Protoc Bioinformatics 2016;54:5.6.1-5.6.37.
7 Kall L, Krogh A, Sonnhammer EL. A combined transmembrane topology and signal peptide prediction method. J Mol Biol 2004;338:1027-1036.   DOI
8 Koes DR, Baumgartner MP, Camacho CJ. Lessons learned in empirical scoring with smina from the CSAR 2011 benchmarking exercise. J Chem Inf Model 2013;53:1893-1904.   DOI
9 Shah A, Adhikari B, Martic S, Munir A, Shahzad S, Ahmad K, et al. Electron transfer in peptides. Chem Soc Rev 2015;44:1015-1027.   DOI
10 Ballesteros JA, Jensen AD, Liapakis G, Rasmussen SG, Shi L, Gether U, et al. Activation of the beta 2-adrenergic receptor involves disruption of an ionic lock between the cytoplasmic ends of transmembrane segments 3 and 6. J Biol Chem 2001;276: 29171-29177.   DOI
11 Roobaert D, Karakoulas G, Chawla NV. Information gain, correlation and support vector machines. In: Feature Extraction: Studies in Fuzziness and Soft Computing, Vol. 207 (Guyon I, Nikravesh M, Gunn S, Zadeh LA, eds.). Berlin: Springer, 2006. pp. 463-470.
12 Saito H, Chi Q, Zhuang H, Matsunami H, Mainland JD. Odor coding by a mammalian receptor repertoire. Sci Signal 2009; 2:ra9.   DOI
13 Masters L, Eagon S, Heying M. Evaluation of consensus scoring methods for AutoDock Vina, smina and idock. J Mol Graph Model 2020;96:107532.   DOI
14 Oh SJ. System-wide expression and function of olfactory receptors in mammals. Genomics Inform 2018;16:2-9.   DOI
15 Lee SJ, Depoortere I, Hatt H. Therapeutic potential of ectopic olfactory and taste receptors. Nat Rev Drug Discov 2019;18:116-138.   DOI
16 Sell CS. On the unpredictability of odor. Angew Chem Int Ed Engl 2006;45:6254-6261.   DOI
17 Chee HK, Oh SJ. Molecular vibration-activity relationship in the agonism of adenosine receptors. Genomics Inform 2013;11:282-288.   DOI
18 Barca GM, Bertoni C, Carrington L, Datta D, De Silva N, Deustua JE, et al. Recent developments in the general atomic and molecular electronic structure system. J Chem Phys 2020; 152:154102.   DOI
19 Bode BM, Gordon MS. MacMolPlt: a graphical user interface for GAMESS. J Mol Graph Model 1998;16:133-138.   DOI
20 Witten IH, Frank E, Hall MA, Pal CJ. Data Mining: Practical Machine Learning Tools and Techniques. 4th ed. San Francisco: Morgan Kaufmann Publishers Inc., 2016.
21 Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 2009;30:2785-2791.   DOI
22 Oppenheimer JR. Three notes on the quantum theory of aperiodic effects. Phys Rev 1928;31:66-81.   DOI
23 Liu S, Fu R, Li G. Exploring the mechanism of olfactory recognition in the initial stage by modeling the emission spectrum of electron transfer. PLoS One 2020;15:e0217665.   DOI
24 Bushdid C, de March CA, Fiorucci S, Matsunami H, Golebiowski J. Agonists of G-protein-coupled odorant receptors are predicted from chemical features. J Phys Chem Lett 2018;9:2235-2240.   DOI
25 Page CC, Moser CC, Chen X, Dutton PL. Natural engineering principles of electron tunnelling in biological oxidation-reduction. Nature 1999;402:47-52.   DOI
26 Adipietro KA, Mainland JD, Matsunami H. Functional evolution of mammalian odorant receptors. PLoS Genet 2012;8:e1002821.   DOI
27 Geithe C, Noe F, Kreissl J, Krautwurst D. The broadly tuned odorant receptor OR1A1 is highly selective for 3-methyl-2,4-nonanedione, a key food odorant in aged wines, tea, and other foods. Chem Senses 2017;42:181-193.   DOI
28 Xu F, Wu H, Katritch V, Han GW, Jacobson KA, Gao ZG, et al. Structure of an agonist-bound human A2A adenosine receptor. Science 2011;332:322-327.   DOI
29 Engel GS, Calhoun TR, Read EL, Ahn TK, Mancal T, Cheng YC, et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 2007;446:782-786.   DOI
30 Hoehn RD, Nichols D, Neven H, Kais S. Neuroreceptor activation by vibration-assisted tunneling. Sci Rep 2015;5:9990.   DOI
31 Burley SK, Bhikadiya C, Bi C, Bittrich S, Chen L, Crichlow GV, et al. RCSB Protein Data Bank: powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res 2021;49:D437-D451.   DOI