DOI QR코드

DOI QR Code

Implications of the simple chemical structure of the odorant molecules interacting with the olfactory receptor 1A1

  • Oh, S. June (Department of Pharmacology, Inje University College of Medicine)
  • Received : 2021.06.03
  • Accepted : 2021.06.18
  • Published : 2021.06.30

Abstract

G protein–coupled receptors (GPCRs), including olfactory receptors, account for the largest group of genes in the human genome and occupy a very important position in signaling systems. Although olfactory receptors, which belong to the broader category of GPCRs, play an important role in monitoring the organism's surroundings, their actual three-dimensional structure has not yet been determined. Therefore, the specific details of the molecular interactions between the receptor and the ligand remain unclear. In this report, the interactions between human olfactory receptor 1A1 and its odorant molecules were simulated using computational methods, and we explored how the chemically simple odorant molecules activate the olfactory receptor.

Keywords

References

  1. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, et al. Crystal structure of rhodopsin: A G protein-coupled receptor. Science 2000;289:739-745. https://doi.org/10.1126/science.289.5480.739
  2. Burley SK, Bhikadiya C, Bi C, Bittrich S, Chen L, Crichlow GV, et al. RCSB Protein Data Bank: powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res 2021;49:D437-D451. https://doi.org/10.1093/nar/gkaa1038
  3. Oh SJ. System-wide expression and function of olfactory receptors in mammals. Genomics Inform 2018;16:2-9. https://doi.org/10.5808/GI.2018.16.1.2
  4. Lee SJ, Depoortere I, Hatt H. Therapeutic potential of ectopic olfactory and taste receptors. Nat Rev Drug Discov 2019;18:116-138. https://doi.org/10.1038/s41573-018-0002-3
  5. Kalra S, Mittal A, Gupta K, Singhal V, Gupta A, Mishra T, et al. Analysis of single-cell transcriptomes links enrichment of olfactory receptors with cancer cell differentiation status and prognosis. Commun Biol 2020;3:506. https://doi.org/10.1038/s42003-020-01232-5
  6. Bushdid C, de March CA, Fiorucci S, Matsunami H, Golebiowski J. Agonists of G-protein-coupled odorant receptors are predicted from chemical features. J Phys Chem Lett 2018;9:2235-2240. https://doi.org/10.1021/acs.jpclett.8b00633
  7. Chee HK, Oh SJ. Molecular vibration-activity relationship in the agonism of adenosine receptors. Genomics Inform 2013;11:282-288. https://doi.org/10.5808/GI.2013.11.4.282
  8. Chee HK, Yang JS, Joung JG, Zhang BT, Oh SJ. Characteristic molecular vibrations of adenosine receptor ligands. FEBS Lett 2015;589:548-552. https://doi.org/10.1016/j.febslet.2015.01.024
  9. Barca GM, Bertoni C, Carrington L, Datta D, De Silva N, Deustua JE, et al. Recent developments in the general atomic and molecular electronic structure system. J Chem Phys 2020; 152:154102. https://doi.org/10.1063/5.0005188
  10. Bode BM, Gordon MS. MacMolPlt: a graphical user interface for GAMESS. J Mol Graph Model 1998;16:133-138. https://doi.org/10.1016/S1093-3263(99)00002-9
  11. Busetto AG, Hauser A, Krummenacher G, Sunnaker M, Dimopoulos S, Ong CS, et al. Near-optimal experimental design for model selection in systems biology. Bioinformatics 2013;29: 2625-2632. https://doi.org/10.1093/bioinformatics/btt436
  12. Roobaert D, Karakoulas G, Chawla NV. Information gain, correlation and support vector machines. In: Feature Extraction: Studies in Fuzziness and Soft Computing, Vol. 207 (Guyon I, Nikravesh M, Gunn S, Zadeh LA, eds.). Berlin: Springer, 2006. pp. 463-470.
  13. Witten IH, Frank E, Hall MA, Pal CJ. Data Mining: Practical Machine Learning Tools and Techniques. 4th ed. San Francisco: Morgan Kaufmann Publishers Inc., 2016.
  14. Wallace IM, O'Sullivan O, Higgins DG, Notredame C. M-Coffee: combining multiple sequence alignment methods with T-Coffee. Nucleic Acids Res 2006;34:1692-1699. https://doi.org/10.1093/nar/gkl091
  15. Webb B, Sali A. Comparative protein structure modeling using MODELLER. Curr Protoc Bioinformatics 2016;54:5.6.1-5.6.37.
  16. Kall L, Krogh A, Sonnhammer EL. A combined transmembrane topology and signal peptide prediction method. J Mol Biol 2004;338:1027-1036. https://doi.org/10.1016/j.jmb.2004.03.016
  17. Koes DR, Baumgartner MP, Camacho CJ. Lessons learned in empirical scoring with smina from the CSAR 2011 benchmarking exercise. J Chem Inf Model 2013;53:1893-1904. https://doi.org/10.1021/ci300604z
  18. Masters L, Eagon S, Heying M. Evaluation of consensus scoring methods for AutoDock Vina, smina and idock. J Mol Graph Model 2020;96:107532. https://doi.org/10.1016/j.jmgm.2020.107532
  19. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 2009;30:2785-2791. https://doi.org/10.1002/jcc.21256
  20. Sell CS. On the unpredictability of odor. Angew Chem Int Ed Engl 2006;45:6254-6261. https://doi.org/10.1002/anie.200600782
  21. Oppenheimer JR. Three notes on the quantum theory of aperiodic effects. Phys Rev 1928;31:66-81. https://doi.org/10.1103/PhysRev.31.66
  22. Liu S, Fu R, Li G. Exploring the mechanism of olfactory recognition in the initial stage by modeling the emission spectrum of electron transfer. PLoS One 2020;15:e0217665. https://doi.org/10.1371/journal.pone.0217665
  23. Shah A, Adhikari B, Martic S, Munir A, Shahzad S, Ahmad K, et al. Electron transfer in peptides. Chem Soc Rev 2015;44:1015-1027. https://doi.org/10.1039/C4CS00297K
  24. Engel GS, Calhoun TR, Read EL, Ahn TK, Mancal T, Cheng YC, et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 2007;446:782-786. https://doi.org/10.1038/nature05678
  25. Page CC, Moser CC, Chen X, Dutton PL. Natural engineering principles of electron tunnelling in biological oxidation-reduction. Nature 1999;402:47-52. https://doi.org/10.1038/46972
  26. Saito H, Chi Q, Zhuang H, Matsunami H, Mainland JD. Odor coding by a mammalian receptor repertoire. Sci Signal 2009; 2:ra9. https://doi.org/10.1126/scisignal.2000016
  27. Adipietro KA, Mainland JD, Matsunami H. Functional evolution of mammalian odorant receptors. PLoS Genet 2012;8:e1002821. https://doi.org/10.1371/journal.pgen.1002821
  28. Geithe C, Noe F, Kreissl J, Krautwurst D. The broadly tuned odorant receptor OR1A1 is highly selective for 3-methyl-2,4-nonanedione, a key food odorant in aged wines, tea, and other foods. Chem Senses 2017;42:181-193. https://doi.org/10.1093/chemse/bjw117
  29. Ballesteros JA, Jensen AD, Liapakis G, Rasmussen SG, Shi L, Gether U, et al. Activation of the beta 2-adrenergic receptor involves disruption of an ionic lock between the cytoplasmic ends of transmembrane segments 3 and 6. J Biol Chem 2001;276: 29171-29177. https://doi.org/10.1074/jbc.M103747200
  30. Xu F, Wu H, Katritch V, Han GW, Jacobson KA, Gao ZG, et al. Structure of an agonist-bound human A2A adenosine receptor. Science 2011;332:322-327. https://doi.org/10.1126/science.1202793
  31. Hoehn RD, Nichols D, Neven H, Kais S. Neuroreceptor activation by vibration-assisted tunneling. Sci Rep 2015;5:9990. https://doi.org/10.1038/srep09990