• Title/Summary/Keyword: Object Region Detection

Search Result 285, Processing Time 0.026 seconds

Object Width Measurement System Using Light Sectioning Method (광절단법을 이용한 물체 크기 측정 시스템)

  • Lee, Byeong-Ju;Kang, Hyun-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.3
    • /
    • pp.697-705
    • /
    • 2014
  • This paper presents a vision based object width measurement method and its application where the light sectioning method is employed. The target object for measurement is a tread, which is the most outside component of an automobile tire. The entire system applying the measurement method consists of two processes, i.e. a calibration process and a detection process. The calibration process is to identify the relationships between a camera plane and a laser plane, and to estimate a camera lens distortion parameters. As the process requires a test pattern, namely a jig, which is elaborately manufactured. In the detection process, first of all, the region that a laser light illuminates is extracted by applying an adaptive thresholding technique where the distribution of the pixel brightness is considered to decide the optimal threshold. Then, a thinning algorithm is applied to the region so that the ends and the shoulders of a tread are detected. Finally, the tread width and the shoulder width are computed using the homography and the distortion coefficients obtained by the calibration process.

Multi-Object Detection and Tracking Using Dual-Layer Particle Sampling (이중계층구조 파티클 샘플링을 사용한 다중객체 검출 및 추적)

  • Jeong, Kyungwon;Kim, Nahyun;Lee, Seoungwon;Paik, Joonki
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.9
    • /
    • pp.139-147
    • /
    • 2014
  • In this paper, we present a novel method for simultaneous detection and tracking of multiple objects using dual-layer particle filtering. The proposed dual-layer particle sampling (DLPS) algorithm consists of parent-particles (PP) in the first layer for detecting multiple objects and child-particles (CP) in the second layer for tracking objects. In the first layer, PPs detect persons using a classifier trained by the intersection kernel support vector machine (IKSVM) at each particle under a randomly selected scale. If a certain PP detects a person, it generates CPs, and makes an object model in the detected object region for tracking the detected object. While PPs that have detected objects generate CPs for tracking, the rest of PPs still move for detecting objects. Experimental results show that the proposed method can automatically detect and track multiple objects, and efficiently reduce the processing time using the sampled particles based on motion distribution in video sequences.

Window Production Method based on Low-Frequency Detection for Automatic Object Extraction of GrabCut (GrabCut의 자동 객체 추출을 위한 저주파 영역 탐지 기반의 윈도우 생성 기법)

  • Yoo, Tae-Hoon;Lee, Gang-Seong;Lee, Sang-Hun
    • Journal of Digital Convergence
    • /
    • v.10 no.8
    • /
    • pp.211-217
    • /
    • 2012
  • Conventional GrabCut algorithm is semi-automatic algorithm that user must be set rectangle window surrounds the object. This paper studied automatic object detection to solve these problem by detecting salient region based on Human Visual System. Saliency map is computed using Lab color space which is based on color opposing theory of 'red-green' and 'blue-yellow'. Then Saliency Points are computed from the boundaries of Low-Frequency region that are extracted from Saliency Map. Finally, Rectangle windows are obtained from coordinate value of Saliency Points and these windows are used in GrabCut algorithm to extract objects. Through various experiments, the proposed algorithm computing rectangle windows of salient region and extracting objects has been proved.

Detection Accuracy Improvement of Hang Region using Kinect (키넥트를 이용한 손 영역 검출의 정확도 개선)

  • Kim, Heeae;Lee, Chang Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.11
    • /
    • pp.2727-2732
    • /
    • 2014
  • Recently, the researches of object tracking and recognition using Microsoft's Kinect are being actively studied. In this environment human hand detection and tracking is the most basic technique for human computer interaction. This paper proposes a method of improving the accuracy of the detected hand region's boundary in the cluttered background. To do this, we combine the hand detection results using the skin color with the extracted depth image from Kinect. From the experimental results, we show that the proposed method increase the accuracy of the hand region detection than the method of detecting a hand region with a depth image only. If the proposed method is applied to the sign language or gesture recognition system it is expected to contribute much to accuracy improvement.

A New Hybrid Algorithm for Invariance and Improved Classification Performance in Image Recognition

  • Shi, Rui-Xia;Jeong, Dong-Gyu
    • International journal of advanced smart convergence
    • /
    • v.9 no.3
    • /
    • pp.85-96
    • /
    • 2020
  • It is important to extract salient object image and to solve the invariance problem for image recognition. In this paper we propose a new hybrid algorithm for invariance and improved classification performance in image recognition, whose algorithm is combined by FT(Frequency-tuned Salient Region Detection) algorithm, Guided filter, Zernike moments, and a simple artificial neural network (Multi-layer Perceptron). The conventional FT algorithm is used to extract initial salient object image, the guided filtering to preserve edge details, Zernike moments to solve invariance problem, and a classification to recognize the extracted image. For guided filtering, guided filter is used, and Multi-layer Perceptron which is a simple artificial neural networks is introduced for classification. Experimental results show that this algorithm can achieve a superior performance in the process of extracting salient object image and invariant moment feature. And the results show that the algorithm can also classifies the extracted object image with improved recognition rate.

Active Object Tracking using Image Mosaic Background

  • Jung, Young-Kee;Woo, Dong-Min
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.1
    • /
    • pp.52-57
    • /
    • 2004
  • In this paper, we propose a panorama-based object tracking scheme for wide-view surveillance systems that can detect and track moving objects with a pan-tilt camera. A dynamic mosaic of the background is progressively integrated in a single image using the camera motion information. For the camera motion estimation, we calculate affine motion parameters for each frame sequentially with respect to its previous frame. The camera motion is robustly estimated on the background by discriminating between background and foreground regions. The modified block-based motion estimation is used to separate the background region. Each moving object is segmented by image subtraction from the mosaic background. The proposed tracking system has demonstrated good performance for several test video sequences.

Design and Implementation of a Real-Time Face Detection System (실시간 얼굴 검출 시스템 설계 및 구현)

  • Jung Sung-Tae;Lee Ho-Geun
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.8
    • /
    • pp.1057-1068
    • /
    • 2005
  • This paper proposes a real-time face detection system which detects multiple faces from low resolution video such as web-camera video. First, It finds face region candidates by using AdaBoost based object detection method which selects a small number of critical features from a larger set. Next, it generates reduced feature vector for each face region candidate by using principle component analysis. Finally, it classifies if the candidate is a face or non-face by using SVM(Support Vector Machine) based binary classification. According to experiment results, the proposed method achieves real-time face detection from low resolution video. Also, it reduces the false detection rate than existing methods by using PCA and SVM based face classification step.

  • PDF

Object Segmentation/Detection through learned Background Model and Segmented Object Tracking Method using Particle Filter (배경 모델 학습을 통한 객체 분할/검출 및 파티클 필터를 이용한 분할된 객체의 움직임 추적 방법)

  • Lim, Su-chang;Kim, Do-yeon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.8
    • /
    • pp.1537-1545
    • /
    • 2016
  • In real time video sequence, object segmentation and tracking method are actively applied in various application tasks, such as surveillance system, mobile robots, augmented reality. This paper propose a robust object tracking method. The background models are constructed by learning the initial part of each video sequences. After that, the moving objects are detected via object segmentation by using background subtraction method. The region of detected objects are continuously tracked by using the HSV color histogram with particle filter. The proposed segmentation method is superior to average background model in term of moving object detection. In addition, the proposed tracking method provide a continuous tracking result even in the case that multiple objects are existed with similar color, and severe occlusion are occurred with multiple objects. The experiment results provided with 85.9 % of average object overlapping rate and 96.3% of average object tracking rate using two video sequences.

Artificial Neural Network Method Based on Convolution to Efficiently Extract the DoF Embodied in Images

  • Kim, Jong-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.3
    • /
    • pp.51-57
    • /
    • 2021
  • In this paper, we propose a method to find the DoF(Depth of field) that is blurred in an image by focusing and out-focusing the camera through a efficient convolutional neural network. Our approach uses the RGB channel-based cross-correlation filter to efficiently classify the DoF region from the image and build data for learning in the convolutional neural network. A data pair of the training data is established between the image and the DoF weighted map. Data used for learning uses DoF weight maps extracted by cross-correlation filters, and uses the result of applying the smoothing process to increase the convergence rate in the network learning stage. The DoF weighted image obtained as the test result stably finds the DoF region in the input image. As a result, the proposed method can be used in various places such as NPR(Non-photorealistic rendering) rendering and object detection by using the DoF area as the user's ROI(Region of interest).

A Method for Body Keypoint Localization based on Object Detection using the RGB-D information (RGB-D 정보를 이용한 객체 탐지 기반의 신체 키포인트 검출 방법)

  • Park, Seohee;Chun, Junchul
    • Journal of Internet Computing and Services
    • /
    • v.18 no.6
    • /
    • pp.85-92
    • /
    • 2017
  • Recently, in the field of video surveillance, a Deep Learning based learning method has been applied to a method of detecting a moving person in a video and analyzing the behavior of a detected person. The human activity recognition, which is one of the fields this intelligent image analysis technology, detects the object and goes through the process of detecting the body keypoint to recognize the behavior of the detected object. In this paper, we propose a method for Body Keypoint Localization based on Object Detection using RGB-D information. First, the moving object is segmented and detected from the background using color information and depth information generated by the two cameras. The input image generated by rescaling the detected object region using RGB-D information is applied to Convolutional Pose Machines for one person's pose estimation. CPM are used to generate Belief Maps for 14 body parts per person and to detect body keypoints based on Belief Maps. This method provides an accurate region for objects to detect keypoints an can be extended from single Body Keypoint Localization to multiple Body Keypoint Localization through the integration of individual Body Keypoint Localization. In the future, it is possible to generate a model for human pose estimation using the detected keypoints and contribute to the field of human activity recognition.