• Title/Summary/Keyword: OLED Display Backplane

Search Result 25, Processing Time 0.043 seconds

Invited Paper: Oxide Thin Film Transistors for Use as Next Generation Active Matrix Backplanes

  • Kim, Hye-Dong;Park, Jin-Seong;Mo, Yeon-Gon;Kim, Sang-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.35-37
    • /
    • 2009
  • In this work, we introduce new next generation activematrix backplane technologies for large-size AMOLED displays. Among the general requirements for successful market launch of AMOLED TVs, backplane issues are discussed. It will be shown that the amorphous oxide TFT is most suitable due to large scalability and superior cost effectiveness. Development status and current challenges of amorphous oxide TFTs are discussed.

  • PDF

Novel Backplane for AM-OLED Device

  • Sung, Myeon-Chang;Lee, Ho-Nyun;Kim, Chang Nam;Kang, Sun Kil;Kim, Do Youl;Kim, Seong-Joong;Kim, Sang-Kyoon;Kim, Sung-Kab;Kim, Hong-Gyu;Kim, Sung-Tae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.133-136
    • /
    • 2007
  • IGZO TFTs were fabricated by conventional photolithography and wet-etching processes on metal substrates for the flexible display. The characteristics of TFTs on metal substrates were comparable to those of TFTs on glass substrates. Moreover, AM-OLED panels based on IGZO TFT arrays on metal substrates were successfully driven, for the first time.

  • PDF

Wide-QQVGA Flexible Full-Color Active-Matrix OLED Display with an Organic TFT Backplane

  • Nakajima, Yoshiki;Takei, Tatsuya;Tsuzuki, Toshimitsu;Suzuki, Mitsunori;Fukagawa, Hirohiko;Fujisaki, Yoshihide;Yamamoto, Toshihiro;Kikuchi, Hiroshi;Tokito, Shizuo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.189-192
    • /
    • 2008
  • A 5.8-inch wide-QQVGA flexible full-color active-matrix OLED display was fabricated on a plastic substrate. Low-voltage-operation organic TFTs and high-efficiency phosphorescent OLEDs were used as the backplane and emissive pixels, respectively. The fabricated display clearly showed color moving images when the driving voltage was below 15 V.

  • PDF

15" XGA Dual-plate OLED Display (DOD) based on Amorphous Silicon (a-Si) TFT Backplane

  • Han, Chang-Wook;Kim, Woo-Chan;Kim, Seung-Tae;Tak, Yoon-Heung;Ahn, Byung-Chul;Kang, In-Byeong;Chung, In-Jae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.123-126
    • /
    • 2008
  • We report the improved AMOLED with a-Si TFT backplane based on our unique structure. Our new structure is called Dual-plate OLED Display (DOD). It can also achieve not only higher uniformity of luminance in large-sized display due to low electrical resistance of common electrode but also wider viewing angle.

  • PDF

Highly Robust Bendable a-IGZO TFTs on Polyimide Substrate with New Structure

  • Kim, Tae-Woong;Stryakhilev, Denis;Jin, Dong-Un;Lee, Jae-Seob;An, Sung-Guk;Kim, Hyung-Sik;Kim, Young-Gu;Pyo, Young-Shin;Seo, Sang-Joon;Kang, Kin-Yeng;Chung, Ho-Kyoon;Berkeley, Brain;Kim, Sang-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.998-1001
    • /
    • 2009
  • A new flexible TFT backplane structure with improved mechanical reliability is proposed. Amorphous indium-gallium-zinc-oxide (a-IGZO) thin film transistors based on this structure have been fabricated on a polyimide substrate, and the resultant mechanical durability has been evaluated in a cyclic bending test. The panel can withstand 10,000 bending cycles at a bending radius of 5 mm without any noticeable TFT degradation. After 10K bending cycles, the change of threshold voltage, mobility, sub-threshold slope, and gate leakage current were only -0.22V, -0.13$cm^2$/V-s, -0.05V/decade, and $-3.05{\times}10^{-13}A$, respectively.

  • PDF

Effect of Passivation Layer Properties on the Performance of Oxide TFTs

  • Jeong, Byoung-Seong;Park, Chang-Mo;Kim, Mu-Gyeom;Chung, Hyun-Joong;Ahn, Tae-Kyung;Heo, Seong-Kweon;Jeong, Jong-Han;Kim, Min-Kyu;Park, Hye-Hyang;Huh, Jong-Moo;Mo, Yeon-Gon;Kim, Hye-Dong;Kim, Sang-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1040-1043
    • /
    • 2009
  • a-IGZO is an attractive material to make an AMOLED device with uniform TFT properties for use in a large size display. However, this material shows TFT properties that are very sensitive to water or hydrogen. Therefore, it is essential to control these critical factors during fabrication of the backplane in order to improve the TFT performance. In this paper, we report the effect of passivation layer properties on the performance of the oxide TFTs.

  • PDF

A flexible OTFT-OLED display using solution-processed organic dielectrics

  • Hirai, Nobukazu;Katsuhara, Mao;Yagi, Iwao;Yasuda, Ryoichi;Ushikura, Shin-Ich;Noda, Makoto;Moriwaki, Toshiki;Imaoka, Ayaka;Yoneya, Nobuhide;Yumoto, Akira;Nomoto, Kazumasa;Urabe, Tetsuo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.131-134
    • /
    • 2009
  • We have developed a flexible OTFT backplane in which all the dielectrics are formed by solutionprocess in order to achieve low-cost and highthroughput manufacturing. The backplane successfully drives a flexible AM-OLED display with peak brightness of > 200 nit and the contrast ratio of > 1000:1 with great mechanical flexibility.

  • PDF

Development of IGZO TFTs and Their Applications to Next-Generation Flat-Panel Displays

  • Hsieh, Hsing-Hung;Lu, Hsiung-Hsing;Ting, Hung-Che;Chuang, Ching-Sang;Chen, Chia-Yu;Lin, Yusin
    • Journal of Information Display
    • /
    • v.11 no.4
    • /
    • pp.160-164
    • /
    • 2010
  • Organic light-emitting devices (OLEDs) have shown superior characteristics and are expected to dominate the nextgeneration flat-panel displays. Active-matrix organic light-emitting diode (AMOLED) displays, however, have stringent demands on the performance of the backplane. In this paper, the development of thin-film transistors (TFTs) based on indium gallium zinc oxide (IGZO) on both Gen 1 and 6 glasses, and their decent characteristics, which meet the AMOLED requirements, are shown. Further, several display prototypes (e.g., 2.4" AMOLED, 2.4" transparent AMOLED, and 32" AMLCD) using IGZO TFTs are demonstrated to confirm that they can indeed be strong candidates for the next-generation TFT technology not only of AMOLED but also of AMLCD (active-matrix liquid crystal display).

Thermal Analysis on Glass Backplane of OLED Displays During Joule Induced Crystallization Process (OLED 디스플레이 제작을 위한 Joule 유도 결정화 공정에서의 유리기판에 대한 열해석)

  • Kim, Dong-Hyun;Park, Seung-Ho;Hong, Won-Eui;Chung, Jang-Kyun;Ro, Jae-Sang;Lee, Seung-Hyuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.10
    • /
    • pp.797-802
    • /
    • 2009
  • Large area crystallization of amorphous silicon thin-films on glass substrates is one of key technologies in manufacturing flat displays. Among various crystallization technologies, the Joule induced crystallization (JIC) is considered as the highly promising one in the OLED fabrication industries, since the amorphous silicon films on the glass can be crystallized within tens of microseconds, minimizing the thermally and structurally harmful influence on the glass. In the JIC process the metallic layers can be utilized to heat up the amorphous silicon thin films beyond the melting temperatures of silicon and can be fabricated as electrodes in OLED devices during the subsequent processes. This numerical study investigates the heating mechanisms during the JIC process and estimates the deformation of the glass substrate. Based on the thermal analysis, we can understand the temporal and spatial temperature fields of the backplane and its warping phenomena.

Backplane Technologies for Flexible Display (플렉시블 디스플레이 백플레인 기술)

  • Lee, Yong Uk
    • Vacuum Magazine
    • /
    • v.1 no.2
    • /
    • pp.24-29
    • /
    • 2014
  • Display is a key component in electronic devices. OLED is growing very fast recently due to the explosion of the smart phone market although still LCD is the dominating display technology in the display market at the moment. Also needs for the large area and high resolution TVs and flexible displays are increasing these days. Especially flexible display is expected to be one of the key technologies in mobile devices requiring small device size and large display size. Contrary to the conventional displays, flexible display requires organic materials for the substrate, the active driving element and also for the display element. Plastic film as a substrate, organic semiconductor as an active component of the transistor and organic light emitting materials or electronic paper as a display element are studied actively. In this article, mainly backplane technologies such as substrates and the transistor materials for flexible display will be introduced.