• Title/Summary/Keyword: OLED 조명

Search Result 76, Processing Time 0.03 seconds

혼합 형광체를 사용하여 제작한 백색 유기발광소자의 전기적 및 광학적 특성

  • Jang, Jae-Seung;Kim, Dae-Hun;Kim, Tae-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.508-508
    • /
    • 2013
  • 백색 유기발광소자는 전색 디스플레이, 액정디스플레이의 backlights, 조명에서 잠재적인 가능성 때문에 디스플레이와 조명 업계에서 각광 받고 있다. 백색 유기발광소자를 제작하기 위한 방법으로 형광체를 이용한 백색 유기발광소자가 연구되고 있지만, 아직 색순도와 색좌표에 대한 연구가 필요하다. 본 연구에서는 무기물 형광체를 이용한 백색 유기발광소자의 전기적 특성과 광학적 특성을 관찰하였다. 광원으로 사용된 청색 유기발광소자에 적색과 녹색의 무기물 형광체를 결합하는 방법으로 백색 유기발광소자를 제작하였다. 광원으로 사용한 청색 유기발광소자의 양극으로는 투명전극으로 널리 쓰이고 있는 ITO를 사용하였고 정공 수송층으로는 N,N'-bis-(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine, 청색 발광층으로는 1,3-bis(carbazol-9-yl) benzene 호스트에 bis (3,5-difluoro-2-(2-pyridyl)phenyl)-(2-carboxypyridyl) iridium (III) 청색인광도 펀트를 사용하였다. 정공 저지층과 전자 수송층으로는 각각 2,9-dimethyl-4,7-diphenyl-1,10-phenanthorlene와 4,7-diphenyl-1,10-phenanthroline을 사용하고 전자 주입층으로는 lithium quinolate를 사용하였으며 음극으로는 Al을 사용하였다. 색 변환층으로 사용된 유기물 형광체는 sol-gel 방법으로 제작된 적색 형광체와 녹색 형광체를 사용하였다. Sol-gel 방법으로 제작된 형광체에 대한 주사현미경 측정 결과 입자의 표면이 고르고 크기가 작고 균일하였고, 높은 온도 열처리에 따라서 용매제가 대부분 제거되어 형광체 발광 특성이 잘 일어났음을 확인하였다. 제작한 백색유기발광소자에서 혼합비율에 따른 전계발광 특성 변화를 관찰하였다.

  • PDF

고분자/저분자 혼합 발광층을 가진 백색 유기발광 소자의 미세구조, 전기적 및 광학적 특성

  • Park, Seong-Jun;Jeon, Yeong-Pyo;Kim, Tae-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.503-503
    • /
    • 2013
  • 유기발광소자는 기존의 디스플레이에 비해서 빠른 응답속도, 넓은 시야각과 높은 박막 특성으로 백색 조명 광원으로 많은 주목을 받고 있다. 특히 백색 조명 광원 관련 기술은 친환경 에너지와 관련해 주목을 받고 있어 연구가 활발하게 진행되고 있다. 백색 유기발광소자를 제작하기 위해서 청색과 황색의 발광층을 적층하는 방법은 유기물질의 계면에서의 불균일로 인한 효율 저하와 구동전압에 따른 재결합 구역의 변화로 색안정성이 나빠지는 문제점이 있었다. 본 연구에서는 고효율 및 높은 색안정성을 나타내는 백색 유기발광소자를 제작하기 위해 고분자/저분자 혼합 발광층 구조를 사용하였다. 고분자 poly (2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylenevinylene (MEH-PPV)와 polystyrene (PS) 혼합물을 스핀코팅하여 박막을 형성한 후, 열처리에 의한 상분리 현상을 이용하여 선택적으로 PS 물질을 제거한 후, MEH-PPV 적색 다공성 고분자 발광층을 형성하였고, 저분자 2-methyl-9,10-di (2-naphthyl) anthracene을 적색 다공성 고분자 발광층 위에 진공증착하여 고분자/저분자 혼합 발광층 구조를 만들었다. MEH-PPV 적색 다공성 고분자 발광층의 혼합 비율을 변화함에 따른 발광층의 미세구조를 원자힘 현미경으로 관찰하였다. 진공증착 후 완성된 고분자/저분자 혼합 발광층을 가진 백색 유기발광 소자의 전류-전압-휘도 측정 결과, MEH-PPV와 PS의 혼합비율이 최적화 되었을 때 안정적인 백색광이 나오는 것을 관측할 수 있었다.

  • PDF

형광체를 사용한 색변환층을 가진 백색 유기발광 소자의 메커니즘 분석

  • Song, U-Seung;Kim, Dae-Hun;Kim, Tae-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.524-524
    • /
    • 2013
  • 백색 유기발광소자는 전색 디스플레이나 조명용 광원으로 쓰일 수 있기 때문에 많은 연구가 진행되고 있다. 백색 유기발광소자를 제작하기 위해서는 보통 청색, 녹색 및 적색을 가지는 발광층을 적층하거나 세 가지 색을 가지는 혼합하여 단일 발광층으로 제작할 수 있으나 구조가 복잡해지고 제작이 어려워지는 단점이 있다. 본 연구에서는 sol-gel 방법으로 제작된 무기물 형광체를 색변환 층으로 사용하였고, 청색 유기발광소자를 광원으로 하여 백색 유기발광소자를 제작하였다. 청색 유기 물질을 발광층으로 사용하여 제작한 청색 유기발광소자를 광원으로 사용하였고 다른 온도에서 소결된 무기물 형광체를 색변환층으로 사용하여 백색 유기발광소자를 제작하여 발광 특성을 관찰하였다. 다른 소결 온도에서 형성된 무기물 형광체의 주사 전자현미경 측정과 X-선 회절 층정을 통해서 무기물 형광체의 형성 및 표면 형태를 관찰하였다. 제작한 무기 형광체를 색변환층으로 사용하여 백색 유기발광소자를 제작하였고, 인가한 전압에 따른 전계발광 특성 변화를 통해서 색변환 메커니즘을 규명하였다.

  • PDF

The development of ultra high-speed metal film deposition system and process technology for a heat sink in digital devices (디지털 소자용 방열판 제작을 위한 초고속 금속필름 증착장치 및 공정기술 개발)

  • Yoon, Hyo Eun;Ahn, Seong Joon;Han, Dong Hwan;Ahn, Seungjoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.17-25
    • /
    • 2017
  • To resolve the problem of the temperature rise in LED or OLED lighting, until now a thick metal film has been used as a heat-sink. Conventionally, this thick metal film is made by the electroplating method and used as the heat-dissipating plate of the electronic devices. However, nowadays there is increasing need for a Cu metal film with a thickness of several hundred micrometers that can be formed by the dry deposition method. In this work, we designed and fabricated a Cu film deposition system where the heating element is separated from the ceramic crucible, which makes ultra-rapid deposition possible by preventing heat loss. In addition, the resulting induction heating also contributes to the high deposition rate. By tuning the various parameters, we obtained a $100-{\mu}m$ thick Cu film whose heat conductivity is high and whose thickness uniformity is better than 2%, while the deposition rate is as high as $1000{\AA}/s$.

Efficient Green Phosphorescent OLEDs with Hexaazatrinaphthylene Derivatives as a Hole Injection Layer (Hexaazatrinaphthylene 유도체를 정공 주입층으로 사용한 고효율 녹색 인광 OLEDs)

  • Lee, Jae-Hyun;Lee, Jonghee
    • Applied Chemistry for Engineering
    • /
    • v.26 no.6
    • /
    • pp.725-729
    • /
    • 2015
  • Organic light emitting diodes (OLEDs) are regarded as the next generation display and solid-state lighting due to their superb achievements from extensive research efforts on improving the efficiency and stability of OLEDs in addition to developing new materials. Herein, efficient green phosphorescent OLEDs were obtained by using hexaazatrinaphthylene (HAT) derivatives as a hole injection layer. External quantum and current efficiencies of OLEDs were enhanced from 8.8% and 30.8 cd/A to 13.6% and 47.7 cd/A, respectively by inserting a thin layer of HAT derivatives between the ITO and hole transporting layer. The enhancement of OLEDs was found to be originated from the inserted HAT derivatives, which resulted in the optimized hole-electron balance inside the emission layer.

저분자, 고분자 혼합 발광층 을 가진 백색유기 발광소자의 전기적, 광학적 특성

  • Kim, Dae-Hun;Jeong, Hyeon-Seok;Kim, Tae-Hwan;Jeong, Je-Myeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.475-475
    • /
    • 2012
  • 백색 유기발광소자는 매우 얇고, 가볍고, 저전력 구동이 가능하다는 점에서 전색 디스플레이나 조명 시장에서 많은 관심을 끌고 있다. 고효율을 가진 백색 유기발광소자의 제작을 위해서는 일반적으로 쉐도우 마스크를 사용하여 발광 패턴을 만들기 때문에 제작 비용이 비싸다는 단점을 가진다. 본 논문에서는 제작 공정이 간단하고, 저비용의 장점을 가지는 용액 공정을 사용하여 나노 구멍 구조를 가지는 적색 고분자와 청색 저분자의 혼합 발광층으로 백색 유기발광소자를 제작하였다. 이 나노 구멍 구조를 가지는 poly[2-methoxy, 5-(2'-ethyl-hexyloxy)-p-phenylene vinylene] (MEH-PPV)/ 2-methyl-9,10-di(2-naphthyl)anthracene (MADN) 혼합 발광층의 전기적, 광학적 특성을 분석하기 위하여 MEH-PPV/MADN 적층 구조를 가지는 백색 유기발광소자를 제작하여 비교, 분석하였다. 나노 구멍 구조를 가지는 혼합 발광층의 발광 스펙트럼에서 적층 구조보다 청색 파장대의 빛의 비율을 높일 수 있었다. 그 이유는 나노 구멍 구조를 가지는 혼합 발광층에서 정공수송층인 poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) 층과 청색 발광층 사이의 일부분 접합부분의 정공 주입 때문이다. 또한, 혼합 발광층을 가진 백색 유기발광소자의 전류 밀도와 휘도는 구멍을 가진 MEH-PPV 층 때문에 상당히 증가하는 것을 알 수 있다. 혼합 발광층을 가진 백색 유기발광소자의 적색과 청색의 균형은 나노 구멍의 크기를 통해서 조절이 가능하고, 색 안정성은 정공 주입층과 청색 발광층 사이의 직접 접촉에 의한 구동 전압의 변화를 따라 증가시킬 수 있었다. 그 결과, 혼합 발광층을 가지는 백색 유기발광소자에서 적색과 청색 발광층의 발광 균형은 스핀 코팅 속도가 3,000 rpm일 때, 최적의 결과를 나타내었다. 이러한 실험 결과들은 저분자/고분자로 이루어진 혼합 발광층을 가진 백색 유기발광소자에서의 전자와 정공의 전달 및 발광 메커니즘을 분석할 수 있었다.

  • PDF