• Title/Summary/Keyword: OH Radical

Search Result 1,516, Processing Time 0.029 seconds

Protective Effect Against Hydroxyl Radical-induced DNA Damage and Antioxidant Mechanism of [6]-gingerol: A Chemical Study

  • Lin, Jing;Li, Xican;Chen, Li;Lu, Weizhao;Chen, Xianwen;Han, Lu;Chen, Dongfeng
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1633-1638
    • /
    • 2014
  • [6]-Gingerol is known as the major bioactive constituent of ginger. In the study, it was observed to effectively protect against ${\bullet}OH$-induced DNA damage ($IC_{50}$ $328.60{\pm}24.41{\mu}M$). Antioxidant assays indicated that [6]-gingerol could efficiently scavenge various free radicals, including ${\bullet}OH$ radical ($IC_{50}$ $70.39{\pm}1.23{\mu}M$), ${\bullet}O_2{^-}$ radical ($IC_{50}$ $228.40{\pm}9.20{\mu}M$), $DPPH{\bullet}$radical ($IC_{50}$ $27.35{\pm}1.44{\mu}M$), and $ABTS{^+}{\bullet}$radical ($IC_{50}$ $2.53{\pm}0.070{\mu}M$), and reduce $Cu^{2+}$ ion ($IC_{50}$ $11.97{\pm}0.68{\mu}M$). In order to investigate the possible mechanism, the reaction product of [6]-gingerol and $DPPH{\bullet}$ radical was further measured using HPLC combined mass spectrometry. The product showed a molecular ion peak at m/z 316 $[M+Na]^+$, and diagnostic fragment loss (m/z 28) for quinone. On this basis, it can be concluded that: (i) [6]-gingerol can effectively protect against ${\bullet}OH$-induced DNA damage; (ii) a possible mechanism for [6]-gingerol to protect against oxidative damage is ${\bullet}OH$ radical scavenging; (iii) [6]-gingerol scavenges ${\bullet}OH$ radical through hydrogen atom ($H{\bullet}$) transfer (HAT) and sequential electron (e) proton transfer (SEPT) mechanisms; and (iv) both mechanisms make [6]-gingerol be oxidized to semi-quinone or quinone forms.

Antioxidative Effects of Phellinus linteus Extract (상황버섯 추출물의 항산화 효과)

  • Rhyu, Dong-Young;Kim, Min-Suk;Min, Oh-Jin;Kim, Dong-Wook
    • Korean Journal of Plant Resources
    • /
    • v.21 no.1
    • /
    • pp.91-95
    • /
    • 2008
  • Reactive oxygen species(ROS) or free radical-mediated oxidative stress plays an important role in the pathophysiologic process of disease state. This study investigated antioxidative effects of Phellinus linteus extract on the generation of 1,1-diphenyl-2-picrylhydrazyl(DPPH) radical, superoxide anion radical(${O_2}^-$), hydroxyl radical(${\cdot}OH$), nitric oxide(NO), and peroxynitrite($ONOO^-$) radical and free radical-mediated protein oxidation under in vitro assay systems. This results showed that Phellinus linteus extract effectively inhibited the generation of free radicals in the all assay system with dose-dependent manner and also significantly reduced the protein oxidative level. Thus, the present study indicates that Phellinus linteus extract possesses a potent antioxidant activity and plays a beneficial role against free radical-induced oxidative injury.

Antioxidant Activity of Rosa rugosa (해당화의 항산화 효과)

  • 서영완;이희정;안종웅;이범종;문성기
    • KSBB Journal
    • /
    • v.19 no.1
    • /
    • pp.67-71
    • /
    • 2004
  • An antioxidant activity of Rosa rugosa extract and its solvent-partitioned fractions was determined not only by measuring lipid peroxide produced when a mouse liver homogenate was exposed to the air at 37$^{\circ}C$, using thiobarbituric acid (TBA) but also by evaluating the free radical scavenging effect against DPPH radical, authentic peroxynitrite, and 3-morpholinsydnonimine (SIN-1). All its partitioned fractions including crude extract showed potent scavenging effect against DPPH radical, peroxynitrite, and lipid peroxidation. n-BuOH fraction, in particular, was found to be the most effective in DPPH radical scavenging ability as well as inhibition against lipid peroxidation. The 15% aqueous MeOH fraction also showed a strong potency which was slightly lower than n-BuOH fraction. Based on these results, we suggest that Rosa rugosa could be useful for preventing an oxidative damage.

Evaluation of Bromate Formation Pathway by Ozonation in Domestic Raw Waters (국내 수계 원수에서 오존공정에 의한 브로메이트 생성 경로 평가)

  • Lee, Kyung-Hyuk;Lim, Jae-Lim;Park, Sang-Yeon;Kim, Seong-Su;Kang, Joon-Wun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.6
    • /
    • pp.905-910
    • /
    • 2006
  • In order to evaluate the optimum operation condition of ozonation to minimize bromate formation, based on the NOM characteristics of raw waters, the pathway of bromate formation by ozonation in domestic raw waters was investigated. Considering the bromate formation reactions, the fractions of bromate formation from bromide by OH radical and molecular ozone were calculated with measured values of ozone decay rate ($k_c$) and Rct. The results showed that molecular ozone is more important role in the formation of bromate in domestic raw waters than OH radical. The ratio of bromide oxidation reaction by molecular ozone ranged 73~88%. Fractions of $HOBr/OBr^-$ reaction with both molecular ozone and OH radical were also determined. OH radical reaction with $HOBr/OBr^-$ was dominant. The differential equations based on the stoichiometry of bromate formation were established to predict the formation rate of bromate by ozonation. The results shows good correlation with experimental results.

Development of Extracts of Lycii folium Having High Antioxidant Activity (항산화 활성이 높은 구기엽 추출물 제조)

  • Kim, Tae-Su;Park, Won-Jeong;Ko, Sang-Beom;Kang, Myung-Hwa
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.10
    • /
    • pp.1318-1322
    • /
    • 2008
  • The aim of this study was to analyze the antioxidant properties of Lycii folium extracts prepared from different solvents. Lycii folium were extracted with water, 80% ethanol (80% EtOH), 80% methanol (80% MeOH) and 100% methanol (100% MeOH) in water bath at $40^{\circ}C$. The antioxidant activity of the extracts was evaluated using DPPH, hydroxyl and hydrogen radical scavenging activities, and SOD-liked activity. Total phenolic acid contents were 1.085 mg/mL in 100% MeOH, 1.382 mg/mL in 80% EtOH, 1.420 mg/mL in 80% MeOH and 1.084 mg/mL in water. DPPH radical scavenging activity of the extracts were 65.60% in 80% EtOH, 56.80% in 80% MeOH, 83.85% in 100% MeOH and 54.65% in water. Hydroxyl radical scavenging activities were 66.65% in 100% MeOH, 73.13% in 80% ethanol, 73.58% in 80% MeOH and 70.73% in water. Hydrogen radical scavenging activity of the extracts prepared from Lycii folium were 11.70% in 100% MeOH, 33.73% in 80% EtOH, 35.40% in 80% M eOH and 23.86% in water. SOD-liked activity of the extracts prepared from Lycii folium was 71.58% in 100% MeOH, 74.29% in 80% EtOH, 88.46% in 80% MeOH and 67.47% in water. Our result showed that Lycii folium extracts prepared from 80% methanol were found to be promising biomaterials with antioxidant effects.

Evaluation of Disinfection Characteristics of Ozone, UV Processes for Bacillus Subtilis Spores Inactivation (Bacillus Subtilis Spores 불활성화 실험을 통한 오존, UV 공정의 소독 특성 평가)

  • Jung, Yeon Jung;Oh, Byung Soo;Kang, Joon-Wun
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.4
    • /
    • pp.672-677
    • /
    • 2006
  • Ozone/UV combined process is an effective technique to enhance generation of OH radical which is non-selective and powerful oxidant. The objective of this study is to evaluate the inactivation rates of B. subtilis spores by three candidate processes (ozone alone, UV alone, ozone/UV combined processes) at 4 and $20^{\circ}$ and to investigate the effects of OH radical on inactivation of B. subtilis spores. On the UV alone process, required UV dosages for lag phase and 3-log inactivation of B. subtilis spores were determined as $8.9mJ/cm^2$ and $47mJ/cm^2$. However, the inactivation of B. subtilis spores didn't occured beyond 4.5-log inactivation despite increasing UV dose. The inactivation of B. subtilis spores by ozone alone and ozone/UV combined process was investigated with ozone CT (Concentration of disinfectant ${\times}$ Contact time) concept. As a result, inactivation of B. subtilis spores by ozone/UV combined process was faster than by ozone alone, and especially $CT_{lag}$ value B. subtilis spores in the presence and absence of t-BuOH, OH radical scavenger, was investigated to evaluate effects of OH radical formed during ozone/UV combined process. We found that OH radical plays important roles on inactivation of B. subtilis spores.

Radical Scavenging Activity of Ethanol Extracts and Solvent Partitioned Fractions from Various Red Seaweeds (홍조류 에탄올 추출물 및 다양한 용매 분획물의 라디칼 소거능)

  • Cho, MyoungLae;Lee, Dong-Jin;You, SangGuan
    • Ocean and Polar Research
    • /
    • v.34 no.4
    • /
    • pp.445-451
    • /
    • 2012
  • The EtOH extracts of red seaweeds (Symphyocladia latiuscula, Chondrus ocellatus and Carpopeltis affinis) and solvent partitioned fractions were investigated for their 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and 1,1-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging effects and the total phenolic contents were correlated with ABTS and DPPH radical scavenging activities. The EtOH extracts and their solvent partitioned fractions exhibited strong ABTS and DPPH radical scavenging activities. Among the solvent partitioned fractions obtained from n-Hexane (HX), methylenchloride (MC), ethylacetate (EA), and buthanol (BuOH), the HX fraction from C. affinis showed higher radical scavenging activities than other fractions. Total phenolic contents showed significant correlation ($r^2$ = 0.709) with ABTS radical scavenging activity. The results of this study suggest that the strong radical scavenging activity of HX fraction from C. affinis is a promising natural antioxidant for healthcare products.

1,1-Diphenyl-2-picrylhydrazyl Radical Scavenging Compounds of Fraxini Cortex

  • Kim, Hyun-Chul;An, Ren-Bo;Jeong, Gil-Saeng;Oh, Seung-Hwan;Kim, Youn-Chul
    • Natural Product Sciences
    • /
    • v.11 no.3
    • /
    • pp.150-154
    • /
    • 2005
  • The radical scavenging effect of the MeOH extract of Fraxini Cortex on 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical was examined. The $CH_2Cl_2$-and n-BuOH-soluble fractions of MeOH extract showed the promising DPPH radical scavenging effects, and further purified by silica gel, Sephadex LH-20 column chromatography, and reversed-phase C-18 MPLC to yield five coumarins, esculetin (1), fraxidin (2), fraxetin (3), fraxidin $8-O-{\beta}-D-glucopyranoside$ (fraxin methyl ether) (5), esculin (6), and a secoiridoid oleuropein (4), and a coumarin-secoiridoid escuside (7). Compounds 1, 3, and 4 showed potent DPPH radical scavenging effects, exhibiting $IC_{50}$ values of 14.68, 9.64, and $22.03\;{\mu}M$, respectively. Compounds 6 and 7 also showed moderate effects with $IC_{50}$ values of 147.79 and $72.73\;{\mu}M$, respectively. L-Ascorbic acid was used as a positive control and exhibited the $IC_{50}$ value of $50.31\;{\mu}M$.

Effect of Disinfection Process Combination on E. coli Deactivation and Oxidants Generation (E. coli 불활성화와 산화제 생성에 미치는 소독 공정 결합의 영향)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.20 no.7
    • /
    • pp.891-898
    • /
    • 2011
  • The aim of this research was to evaluate the effect of combination of disinfection process (electrolysis, UV process) on Escherichia coli (E. coli) disinfection and oxidants (OH radical, $ClO_2$, HOCl, $H_2O_2$ and $O_3$) generation. The effect of electrolyte type (NaCl, KCl and $Na_2SO_4$) on the E. coli disinfection and oxidants generation were evaluated. The experimental results showed that performance of E. coli disinfection of electrolysis and UV single process was similar. Combination of electrolysis and UV process enhanced the E. coli disinfection and 4-carboxybenzaldehyde (4-CBA, indicator of the generation of OH radical) degradation. It is clearly showed synergy effect on disinfection and OH radical formation. However chlorine ($ClO_2$, HOCl) and oxygen type ($H_2O_2$, $O_3$) oxidants were decreased with the combination of two process. In electrolysis + UV complex process, electro-generated $H_2O_2$ and $O_3$ were reacted with UV light of UV-C lamp and increased 4-CBA degradation(increase OH radical). Disinfection of electrolyte of chlorine type was higher than that of the sulfate type electrolyte due to the higher generation of OH radical and oxidants.

Ozone Oxidation of PAHs in the Presence of Soil (I): Ozonation of Soil Slurry Phase (Ozone에 의한 PAHs 오염토양 복원 연구(I): 토양슬러리상 오존 산화)

  • Lim, Hyung-Nam;Kim, Ji-Yeon;Choi, Heechul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.5
    • /
    • pp.869-877
    • /
    • 2000
  • A mechanism of ozonation of simulated soil slurry contaminated by phenanthrene and benzo[a]pyrene has been studied under various conditions. The effects of soil media(BS, S, GB), radical scavenger, ozone input ratio(0.17~0.73mg/min), bicarbonate ion, and humic acid were investigated, BS showed the highest removal efficiency in media tested. The generation of OH-radical via the catalytic decomposition of ozone on active sites of the natural sand was confirmed by OH-radical scavenger experiments. The enhanced removal efficiency by OH-radical was indirectly quantified to be about 22%. As initial concentration of humic acid(as sodium salt) was increased, pseudo first-order rate constant ($k_o$) of phenanthrene was decreased from $1.37{\times}10^{-2}s^{-1}$ to $0.53{\times}10^{-2}s^{-1}$. The amount of ozone required to oxidize 80% of the initial mass of phenanthrene(10mg/kg) and benzo[a]pyrene(10mg/kg) was 67.2mg/kg-soil and 48.0mg/kg-soil, respectively.

  • PDF