Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.6.1633

Protective Effect Against Hydroxyl Radical-induced DNA Damage and Antioxidant Mechanism of [6]-gingerol: A Chemical Study  

Lin, Jing (School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine)
Li, Xican (School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine)
Chen, Li (School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine)
Lu, Weizhao (School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine)
Chen, Xianwen (School of Chinese Herbal Medicine, Fujian University of Chinese Medicine)
Han, Lu (School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine)
Chen, Dongfeng (School of Basic Medical Science, Guangzhou University of Chinese Medicine)
Publication Information
Abstract
[6]-Gingerol is known as the major bioactive constituent of ginger. In the study, it was observed to effectively protect against ${\bullet}OH$-induced DNA damage ($IC_{50}$ $328.60{\pm}24.41{\mu}M$). Antioxidant assays indicated that [6]-gingerol could efficiently scavenge various free radicals, including ${\bullet}OH$ radical ($IC_{50}$ $70.39{\pm}1.23{\mu}M$), ${\bullet}O_2{^-}$ radical ($IC_{50}$ $228.40{\pm}9.20{\mu}M$), $DPPH{\bullet}$radical ($IC_{50}$ $27.35{\pm}1.44{\mu}M$), and $ABTS{^+}{\bullet}$radical ($IC_{50}$ $2.53{\pm}0.070{\mu}M$), and reduce $Cu^{2+}$ ion ($IC_{50}$ $11.97{\pm}0.68{\mu}M$). In order to investigate the possible mechanism, the reaction product of [6]-gingerol and $DPPH{\bullet}$ radical was further measured using HPLC combined mass spectrometry. The product showed a molecular ion peak at m/z 316 $[M+Na]^+$, and diagnostic fragment loss (m/z 28) for quinone. On this basis, it can be concluded that: (i) [6]-gingerol can effectively protect against ${\bullet}OH$-induced DNA damage; (ii) a possible mechanism for [6]-gingerol to protect against oxidative damage is ${\bullet}OH$ radical scavenging; (iii) [6]-gingerol scavenges ${\bullet}OH$ radical through hydrogen atom ($H{\bullet}$) transfer (HAT) and sequential electron (e) proton transfer (SEPT) mechanisms; and (iv) both mechanisms make [6]-gingerol be oxidized to semi-quinone or quinone forms.
Keywords
[6]-Gingerol; Hydrogen atom transfer; Sequential electron proton transfer; Antioxidant mechanism; Hydroxyl radical;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Bhattacharjee, S.; Deterding, L. J.; Chatterjee, S.; Jiang, J.; Ehrenshaft, M.; Lardinois, O.; Ramirez, D. C.; Tomer, K. B.; Mason, R. P. Free Radic. Biol. Med. 2011, 50, 1536-1545.   DOI   ScienceOn
2 Butt, M. S.; Sultan, M. T. Crit. Rev. Food Sci. Nutr. 2011, 51, 383-393.   DOI   ScienceOn
3 Surh, Y. J. Food Chem. Toxicol. 2002, 8, 1091-1097.
4 Shukla, Y.; Prasad, S.; Tripathi, C.; Singh, M.; George, J.; Kalra, N. Mol. Nutr. Food Res. 2007, 12, 1492-1502.
5 Park, K. K.; Chun, K. S.; Lee, J. M.; Lee, S. S.; Surh, Y. J. Cancer Letters 1998, 19, 139-144.
6 Lin, C. B.; Lin, C. C.; Tsay, G. J. Evid. Based Complement Alternat. Med. 2012, 7, 1-7.
7 Lee, C.; Park, G. H.; Kim, C. Y.; Jang, J. H. Food Chem. Toxicol. 2011, 6, 1261-1269.
8 Yang, G.; Zhong, L.; Jiang, L.; Geng, C.; Cao, J.; Sun, X.; Chen, M.; Ma, Y. Phytother Res. 2011, 10, 1480-1485.
9 Nguyen, T. X.; Grampp, G.; Yurkovskaya, A. V.; Lukzen, N. J. Phys. Chem. A 2013, 33, 7655-7660.
10 Bondet, V.; Berset, C. LWT-Food Sci. Technol. 1997, 30, 609-615.   DOI   ScienceOn
11 Aliaga, C.; Lissi, E. A. Int. J. Chem. Kinet. 1998, 30, 565-570.   DOI   ScienceOn
12 Iuga, C.; Alvarez-Idaboy, J. R.; Vivier-Bunge, A. J. Phys. Chem. B 2011, 115, 12234-12246.   DOI   ScienceOn
13 Lopez-Munguia, A.; Hernandez-Romero, Y.; Pedraza-Chaverri, J.; Miranda-Molina, A.; Regla, I.; Martinez, A.; Castillo, E. PLoS. One 2011, 6, e20115.   DOI
14 Graham Solomons, T. W.; Fryhle, C. B. Organic Chemistry; Chemical Industry Press: Beijing, 2003; p 1008.
15 Iuga, C.; Alvarez-Idaboy, J.R.; Russo, N. J. Org. Chem. 2012, 77, 3868-3877.   DOI   ScienceOn
16 Zheng, R. L., Huang, Z. Y. Free Radical Biology; Higher Education Press: Beijing, 2007; p 143.
17 Repine, J. E.; Pfenninger, O. W.; Talmage, D. W.; Berger, E.M.; Pettijohn, D. E. Proc. Natl. Acad. Sci. USA 1981, 78, 1001-1003.   DOI   ScienceOn
18 Swrnalatha, D.; Mallikarjuna, R. P.; Vishna, D. N.; Madhu, K. B.; Satyanarayana, T.; Jayaveera, N. K. J. Ethnopharmacol. 2010, 127, 515-520.   DOI   ScienceOn
19 Doroshow, J. H. Proc. Natl. Acad. Sci. USA 1986, 83, 4514-4518.   DOI   ScienceOn
20 Li, X. C. Food Chem. 2013, 3, 2083-2088.
21 Nakai, K.; Kadiiska, M. B.; Jiang, J. J.; Stadler, K.; Mason, R. P. Proc. Natl. Acad. Sci. USA 2006, 103, 4616-4621.   DOI   ScienceOn
22 Chan, J.; Fujiwara, T.; Brennan, P.; McNeil, M.; Turco, S. J.; Sibille, J. C.; Snapper, M.; Aisen, P.; Bloom, B. R. Proc. Natl. Acad. Sci. USA 1989, 86, 2453-2457.   DOI
23 Qiao, X. L.; Chen, S. M.; Tan, L.; Zheng, H.; Ding, Y. D.; Ping, Z. H. Magn. Reson. Chem. 2001, 39, 207-211.   DOI   ScienceOn
24 Hyland, K.; Voisin, E.; Banoun, H.; Auclair, C. Anal. Biochem. 1983, 2, 280-287.
25 Luga, C.; Alvarez-ldaboy, J. R.; Russo, N. J. Org. Chem. 2012, 8, 3868-3877.
26 Boudier, A.; Tournebize, J.; Bartosz, G.; Bengueddour, R.; Leroy, P. Anal. Chim. Acta 2012, 20, 97-116.
27 Li, X. C. J. Agric. Food Chem. 2012, 25, 6418-6424.
28 Li, X. C.; Fang, Q.; Lin, J.; Yuan, Z. P.; Han, L.; Gao, Y. X. Bull. Korean Chem. Soc. 2014, 35, 117-122.   DOI   ScienceOn
29 Kim, J. K.; Kim, Y.; Na, K. M.; Surh, Y. J.; Kim, T. Y. Free Radic. Res. 2007, 5, 603-614.
30 Hashizume, O.; Shimizu, A.; Yokota, M.; Sugiyama, A.; Nakada, K.; Miyoshi, H.; Itami, M.; Ohira, M.; Nagase, H.; Takenaga, K. Proc. Natl. Acad. Sci. 2012, 109, 10528-10533.   DOI
31 Bode, A. M.; Ma, W. Y.; Surh, Y. H.; Dong, Z. G. Cancer Res. 2001, 61, 850.
32 Ohnishi, S.; Ma, N.; Thanan, R.; Pinlaor, S.; Hammam, O.; Murata, M.; Kawanishi, S. Oxid. Med. Cell. Longev. 2013, 2013, 387014.
33 Li, X. C.; Mai, W. Q.; Wang, L.; Han, W. J. Anal. Biochem. 2013, 438, 29-31.   DOI   ScienceOn