• Title/Summary/Keyword: OH$+H reaction

Search Result 1,220, Processing Time 0.027 seconds

Formation of Hydroxyl Radical from the Hydrogen Chemisorbed Silicon Surface by Incident Oxygen Atoms

  • Ree, Jong-Baik;Chang, Kyung-Soon;Kim, Yoo-Hang;Shin, Hyung-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.7
    • /
    • pp.986-992
    • /
    • 2003
  • We have calculated the probability of the OH formation and energy deposit of the reaction exothermicity in the newly formed OH, particularly in its vibrational motion, in the gas-surface reaction O(g) + H(ad)/Si → OH(g) + Si on the basis of the collision-induced Eley-Rideal mechanism. The reaction probability of the OH formation increases linearly with initial excitation of the HSi vibration. The translational and vibrational motions share most of the energy when the H-Si vibration is initially in the ground state. But, when the initial excitation increases, the vibrational energy of OH rises accordingly, while the energies shared by other motions vary only slightly. The product vibrational excitation is significant and the population distribution is inverted. Flow of energy between the reaction zone and the solid has been incorporated in trajectory calculations. The amount of energy propagated into the solid is only a few percent of the available energy released in the OH formation.

Synthesis of Ultra-fine Hydroxyapatite Powders by Hydrothermal Reaction (수열반응에 의한 Hydroxyapatite 초미분말의 제조)

  • 민경소;최재웅;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.12
    • /
    • pp.997-1003
    • /
    • 1992
  • Ultra-fine hydroxyapatite powders were synthesized by the hydrothermal reaction of Ca(OH)2 suspension or Ca(NO3)2$.$4H2O solution with (NH4)2HPO4 solution, and the powders were characterized for each synthetic condition. Crystalline hydroxyapatite powders have average grain size of less than 50 nm. By increasing the reaction pressure, the crystallinity was improved, and the crystals were preferentially growing along c-axis. When Ca(NO3)2$.$4H2O of high solubility was used, hydroxyapatite of single phase was produced. However when Ca(OH)2 of low solubility was used more than 0.334 mol/ι, unreacted Ca(OH)2 remained. Diffraction spot patterns of transmission electron microscope show that powders synthesized by the hydrothermal reaction were composed of single crystals of hexagonal phase.

  • PDF

Rates and Mechanism of Fading Reaction of Magenta Azomethine Dye in Basic Solution (염기성 용액에서 마젠타 아조메틴 색소의 퇴색 반응속도와 메커니즘)

  • Lee Joong-Ho;Kim Jung-Sung;Kim Chang-Su
    • Journal of Environmental Science International
    • /
    • v.14 no.7
    • /
    • pp.711-717
    • /
    • 2005
  • A magenta azomethine dye(D) was synthesized from the reaction of 3-methyl-1-phenyl-2-pyrazoline-5-one with N,N-diethyl-1,4-phenylenediamine. The magenta azomethine dye was identified on the basis of elemental analysis, $^{13}C-NMR$, infrared, and GC/MS studies. The magenta azomethine dye was decomposed in a basic solution. Rate constants of the fading reaction of magenta azomethine dye in ethanol-water solvent were measured spectrophoto­metrically at 540 nm. Reaction rate was increased with the increase of $[OH\^{-}]\;and\;[H\_{2}O]$ in the region of $[H_{2}O]=11\~40\;M$. The reaction was governed by the following rate law. -d[D]/dt = $\{k_o\;+\;k_{OH}[OH^-][H_{2O}]\}[D]$ A possible mechanism consistent with the empirical rate law has been proposed.

Investigation on Reaction Pathways for ZnO Formation from Diethylzinc and Water during Chemical Vapor Deposition

  • Kim, Young-Seok;Won, Yong-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.7
    • /
    • pp.1573-1578
    • /
    • 2009
  • A computational study of the reactions between Zn-containing species, the products of the thermal decomposition of diethylzinc (DEZn) and water was investigated. The Zn-containing species – $C_2H_5)_2,\;HZnC_2H_5,\;and\;(ZnC_2H_5)_2$ – were assumed to react with water during ZnO metal organic chemical vapor deposition (MOCVD). Density functional theory (DFT) calculations at the level of B3LYP/6-311G(d) were employed for the geometry optimization and thermodynamic property evaluation. As a result dihydroxozinc, $Zn(OH)_2$, was the most probable reaction product common for all three Zn-containing species. A further clustering of $Zn(OH)_2$ was investigated to understand the initial stage of ZnO film deposition. In experiments, the reactions of DEZn and water were examined by in-situ Raman scattering in a specially designed MOCVD reactor. Although direct evidence of $Zn(OH)_2$ was not observed, some relevant reaction intermediates were successfully detected to support the validity of the gas phase reaction pathways proposed in the computational study.

Effects of H2O Addition in Downstream Interaction between H2-Air and CO-Air Premixed Flames (H2-공기와 CO-공기 예혼합 화염 사이의 후류상호작용에 있어서 H2O 첨가 효과)

  • Park, Jeong;Kwon, Oh Boong;Kim, Tae Hyung;Park, Jong Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.1
    • /
    • pp.6-14
    • /
    • 2015
  • Numerical study was conducted to clarify effects of added $H_2O$ for the downstream interaction between $H_2$-air and CO-air premixed flames in counterflow configuration. The reaction mechanism adopted was Davis model which had been known to be well in agreement with reliable experimental data. The results showed that both lean and rich flammable limits were reduced in increase of strain rate. The most discernible difference between the two with and without having $H_2O$ and/or $H_2$ addition into $H_2$-air and CO-air premixtures was two flammable islands for the former and one island for the latter at high strain flame conditions. Even a small amount of $H_2$, in which $H_2$-air premixed flame cannot be sustained by itself, participates in CO oxidation, thereby altering the CO-oxidation reaction path from the main reaction route $CO+O_2{\rightarrow}CO_2+O$ with a very long chemical time in CO-air flame to the OH-related reaction routes including $CO+OH{\rightarrow}CO_2+H$ with very short chemical times. This intrinsic nature alters flame stability maps appreciably. The results also showed that chemical effects of added $H_2O$ help lean flames at relatively low strain rate be sustained, and suppress the flame stabilization at high strain rates.

Characteristics of Zirconia Nanoparticles with Hydrothermal Synthesis Process (수열합성법으로 제조된 지르코니아의 나노분말 특성)

  • Cho, Chi Wook;Tai, Weon Pil;Lee, Hak Sung
    • Applied Chemistry for Engineering
    • /
    • v.25 no.6
    • /
    • pp.564-569
    • /
    • 2014
  • Zirconia nanoparticles were synthesized by hydrothermal process, and experimental parameters such as reaction temperature, reaction time, kind and concentration of precipitator, kind of precursor were varied. Particle sizes and crystalline phases of each synthesized nanoparticles were analyzed with X-ray diffraction and FE-scanning electron microscope (SEM). The particle size and crystallization of zirconia increased with increasing concentration of precipitator. The growth rate of particle sizes when NaOH as a precipitator was used also increased more than that of KOH. Therefore, the use of KOH rather than NaOH was more effective in the control of particle sizes. An amorphous zirconia nanoparticle was found in 4 h of hydrothermal reaction, but the monoclinic zirconia nanoparticle was found in 8 h and over of hydrothermal reaction, and the width of nanoparticles was slightly slimmed and the length of nanoparticles was slightly extended with increasing reaction time. The smallest particle size was produced at the same synthesis condition when zirconium chloride among the precursors such as zirconium (IV) acetate, zirconium nitrate and zirconium chloride was used.

Interaction of Gas-phase Atomic Hydrogen with Chemisorbed Oxygen Atoms on a Silicon Surface

  • Lee, Sang-Kwon;Ree, Jong-Baik;Kim, Yoo-Hang;Shin, Hyung-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1527-1533
    • /
    • 2011
  • The reaction of gas-phase atomic hydrogen with oxygen atoms chemisorbed on a silicon surface is studied by use of the classical trajectory approach. We have calculated the probability of the OH formation and energy deposit of the reaction exothermicity in the newly formed OH in the gas-surface reaction H(g) + O(ad)/Si${\rightarrow}$ OH(g) + Si. All reactive events occur in a single impact collision on a subpicosecond scale, following the Eley-Rideal mechanism. These events occur in a localized region around the adatom site on the surface. The reaction probability is dependent upon the gas temperature and shows the maximum near 1000 K, but it is essentially independent of the surface temperature. The reaction probability is also independent upon the initial excitation of the O-Si vibration. The reaction energy available for the product state is carried away by the desorbing OH in its translational and vibrational motions. When the initial excitation of the O-Si vibration increases, translational and vibrational energies of OH rise accordingly, while the energy shared by rotational motion varies only slightly. Flow of energy between the reaction zone and the solid has been incorporated in trajectory calculations, but the amount of energy propagated into the solid is only a few percent of the available energy released in the OH formation.

Hydrogen-Atom and Charge Transfer Reactions within Acetylene/Methanol and Ethylene/Methanol Heteroclusters

  • 신동남;최창주;정경훈;정광우
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.10
    • /
    • pp.939-943
    • /
    • 1996
  • Reactions that proceed within mixed acetylene-methanol and ethylene-methanol cluster ions were studied using an electron-impact time-of-flight mass spectrometer. When acetylene and methanol seeded in helium are expanded and ionized by electron impact, the ion abundance ratio, [CH3OH+]/[CH2OH+] shows a propensity to increase as the acetylene/methanol mixing ratio increases, indicating that the initially ionized acetylene ion transfers its charge to adjacent methanol molecules within the clusters. Investigations on the relative cluster ion intensity distributions of [CH3OH2+]/[CH3OH+] and [(CH3OH)2H+]/[CH3OH·CH2OH+] under various experimental conditions suggest that hydrogen-atom abstraction reaction of acetylene molecule with CH3OH ion is responsible for the effective formation of CH2OH ion. In ethylene/methanol clusters, the intensity ratio of [CH3OH2]/[CH3OH] increases linearly as the relative concentration of methanol decreases. The prominent ion intensities of (CH3OH)mH over (CH3OH)m-1CH2OH ions (m=1, 2, and 3) at all mixing ratios are also interpreted as a consequence of hydrogen atom transfer reaction between C2H4 and CH3OH to produce the protonated methanol cluster ions.

The Effect of NaOH, KOH on the Hydrothermal Reaction of $CaO-SiO_2-H_2O$ System ($CaO-SiO_2-H_2O$ 계 수열반응에 미치는 NaOH와 KOH의 영향)

  • 이경희
    • Journal of the Korean Ceramic Society
    • /
    • v.18 no.3
    • /
    • pp.147-151
    • /
    • 1981
  • On the calcium silicate hydrothermal reaction, the effect of NaOH and KOH Studied. Forincreasing the yield of fibers and to promote crystal growth, Rotary autoclae has been used. By addition NaOH solution, approximately 150${\mu}{\textrm}{m}$ of pectolite was grown. By addition KOH solution, approximately 30${\mu}{\textrm}{m}$ of 11$\AA$-Tobermorite was grown under the conditon of 21$0^{\circ}C$ 10 days reaction. These results indicate that 11$\AA$-Tobermorite was stabilized by KOH over a wide Temperature and composition range.

  • PDF

Identification of a Radical Decomposition Pathway(s) of Polycyclic Aromatic Hydrocarbon by the Vibrational Frequency Calculations with DFT Method (DFT법에 의한 진동 운동 진동수 계산을 통한 다고리 방향족 탄화수소의 라디칼 분해 경로 동정)

  • Lee, Byung-Dae;Ha, Kwanga;Lee, Min-Joo
    • Journal of the Korean Chemical Society
    • /
    • v.62 no.5
    • /
    • pp.344-351
    • /
    • 2018
  • The IR spectra of gaseous phenanthrene, phenathrenols, phenanthrenyl radicals, and hydroxylphenanthrene radicals have been obtained using the BLYP/6-311++G(d,p) method. A comparison of these spectra shows that the measurements of IR spectra can be valuable to identify the reaction pathway(s) of the phenanthrene decomposition reaction by ${\cdot}OH$. We have found that the H atom abstraction reaction process can be easily identifiable from the $650-850cm^{-1}$ (CH out-of-plane bending) region and the ${\cdot}OH$ addition reaction process from the CH stretching and bending modes region of IR spectra. In addition, the calculated IR spectra of all five phenanthren-n-ols (n = 1, 2, 3, 4, 9) have also given in this work.