DOI QR코드

DOI QR Code

Characteristics of Zirconia Nanoparticles with Hydrothermal Synthesis Process

수열합성법으로 제조된 지르코니아의 나노분말 특성

  • Cho, Chi Wook (School of Chemical Engineering, University of Ulsan) ;
  • Tai, Weon Pil (Fine Chemical and Material Technical Institute, Ulsan Technopark) ;
  • Lee, Hak Sung (School of Chemical Engineering, University of Ulsan)
  • 조치욱 (울산대학교 화학공학부) ;
  • 태원필 (울산테크노파크 정밀화학소재기술연구소) ;
  • 이학성 (울산대학교 화학공학부)
  • Received : 2014.06.06
  • Accepted : 2014.09.15
  • Published : 2014.12.10

Abstract

Zirconia nanoparticles were synthesized by hydrothermal process, and experimental parameters such as reaction temperature, reaction time, kind and concentration of precipitator, kind of precursor were varied. Particle sizes and crystalline phases of each synthesized nanoparticles were analyzed with X-ray diffraction and FE-scanning electron microscope (SEM). The particle size and crystallization of zirconia increased with increasing concentration of precipitator. The growth rate of particle sizes when NaOH as a precipitator was used also increased more than that of KOH. Therefore, the use of KOH rather than NaOH was more effective in the control of particle sizes. An amorphous zirconia nanoparticle was found in 4 h of hydrothermal reaction, but the monoclinic zirconia nanoparticle was found in 8 h and over of hydrothermal reaction, and the width of nanoparticles was slightly slimmed and the length of nanoparticles was slightly extended with increasing reaction time. The smallest particle size was produced at the same synthesis condition when zirconium chloride among the precursors such as zirconium (IV) acetate, zirconium nitrate and zirconium chloride was used.

지르코니아 나노분말을 수열합성법으로 제조하였으며, 반응온도, 반응시간, 침전제의 종류 및 농도, 전구체의 종류를 실험 변수로 하였고, 각각의 제조된 분말을 X-선 회절(XRD)과 주사전자현미경(FE-SEM)을 통해 입자크기 및 결정상을 측정하였다. 침전제의 농도 증가에 따라 지르코니아 입자크기가 증가하였으며, 입자의 결정화도도 높아졌고, KOH 보다 NaOH 침전제를 사용하였을 경우, 입자 성장 속도가 증가하였다. 이는 입자의 크기 컨트롤에 있어 NaOH를 사용하는 경우보다 KOH를 사용하는 것이 더 효과적이었다. 4 h의 수열반응시간에서는 4 h의 수열반응시간에서는 비정질의 지르코니아 입자가 발견되었지만, 8 h 이상 합성 시, 단사정상의 지르코니아 입자가 생성됨을 확인하였고, 반응시간이 길어짐에 따라 지르코니아 입자의 폭이 소폭으로 줄어들고, 길이는 소폭 늘어남을 확인하였다. 동일한 합성 조건에서 전구체로서 zirconium (IV) acetate, zirconium nitrate, zirconium chloride 중에서 zirconium chloride를 사용하여 합성하였을 경우, 입자의 크기가 가장 작게 형성되었다.

Keywords

References

  1. M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P, Etienne, G. Creuzet, A. Fridederich, and J. Chazelas, Giant magnetoresistance of Fe/Cr magnetic superlattices, Phys. Rev. Lett., 61, 2472-2475 (1988). https://doi.org/10.1103/PhysRevLett.61.2472
  2. L. Schultz, J. Wecker, and E. Hellstern, Formation and properties of NdFeB prepared by mechanical alloying and solid state reaction, J. Appl. Phys., 61, 3583-3585 (1987). https://doi.org/10.1063/1.338708
  3. L. Schultz, K. Schnitzke, and J. Wecker, Preparation and properties of mechanically alloyed rare earth permanent magnets, J. Magn. Mater., 80, 115-118 (1989). https://doi.org/10.1016/0304-8853(89)90336-3
  4. T. Schmidt, M. Mennig, and H. Schmidt, New method for the preparation and stabilization of nanoparticulate $t-ZrO_2$ by a combined Sol-Gel and solvothermal process, J. Am. Ceram. Soc., 90, 1401-1405 (2007). https://doi.org/10.1111/j.1551-2916.2007.01567.x
  5. R. Jossen, R. Mueller, S. E. Pratsinis, M. Watson, and K. Akhtar, Morphology and composition of spray-flame-made yttria-stabilized zirconia nanoparticles, Nanotechnol., 16, 609-617 (2005). https://doi.org/10.1088/0957-4484/16/4/046
  6. A. R. Pebler, Preparation of small particle stabilized zirconia by aerosol pyrolysis, J. Mater. Res., 5, 680-682 (1990). https://doi.org/10.1557/JMR.1990.0680
  7. J. Kaspar and P. Fornasiero, Nanostructured materials for advanced automotive de-pollution catalysts, J. Solid State Chem., 171, 19-29 (2003). https://doi.org/10.1016/S0022-4596(02)00141-X
  8. Y. Mizutani, K. Hisada, K. Ukai, H. Sumi, M. Yokoyama, Y. Nakamura, and O. Yamamoto, From rare earth doped zirconia to 1 kW solid oxide fuel cell system, J. Alloy. Comp., 408, 518-524 (2006).
  9. J. H. Lee, Review on zirconia air-fuel ratio sensors for automotive applications, J. Mater. Sci., 38, 4247-4257 (2003). https://doi.org/10.1023/A:1026366628297
  10. G. M. Wolten, Diffusionless phase transformations in zirconia and hafnia, J. Am. Ceram. Soc., 46, 418-422 (1963). https://doi.org/10.1111/j.1151-2916.1963.tb11768.x
  11. C. J. Brinker and G. W. Scherer, Sol-Gel Science, The physics and chemistry of sol-gel processing, 1, 5-10, Academic press, Inc., San Diego, USA (1990).
  12. W. Pyda, K. Haberko, and M. M. Bulko, Hydrothermal crystallization of zirconia and zirconia solid solutions, J. Am. Ceram. Soc., 74, 2622-2629 (1991). https://doi.org/10.1111/j.1151-2916.1991.tb06810.x
  13. C. Li, I. Yamai, Y. Murase, and E. Kato, Formation of acicular monoclinic zirconia particles under hydrothermal conditions, J. Am. Ceram. Soc., 72, 1479-1482 (1989). https://doi.org/10.1111/j.1151-2916.1989.tb07681.x
  14. H. Cheng, L. Wu, J. Ma, Z. Zhang, and L. Qi, The effects of pH and alkaline earth ions on the formation of nanosized zirconia phases under hydrothermal conditions, J. Eur. Ceram. Soc., 19, 1675-1681 (1999). https://doi.org/10.1016/S0955-2219(98)00266-0
  15. H. Kumazawa, T. Inoue, and E. Sada, Synthesis of fine spherical zirconia particles by controlled hydrolysis of zirconium alkoxide in the high temperature range above 50, Chem. Eng. J., 55, 93-96 (1994).
  16. Y. T. Moon, D. K. Kim, and C. H. Kim, Preparation of monodisperse $ZrO_2$ by the microwave heating of zirconyl chloride solutions, J. Am. Ceram. Soc., 78, 1103-1106 (1995). https://doi.org/10.1111/j.1151-2916.1995.tb08448.x
  17. M. Dechamps, B. Djuricic, and S. Pickering, Structure of zirconia prepared by homogeneous precipitation, J. Am. Ceram. Soc., 78, 2873-2880 (1995). https://doi.org/10.1111/j.1151-2916.1995.tb09058.x
  18. K. Matsui, H. Suzuki, M. Ohgai, and H. Arashi, Raman spectroscopic studies on the formation mechanism of hydrous-zirconia fine particles, J. Am. Ceram. Soc., 78, 146-152 (1995). https://doi.org/10.1111/j.1151-2916.1995.tb08374.x
  19. R. A. Laudise and J. W. Niesen, Hydrothermal crystal growth, Solid State Phys., 12, 149-222 (1961).
  20. D. J. Watson, C. A. Randall, R. E. Newnham, and J. H. Adair, Ceramic Transation, Vol. 1, Ceramic Powder Science, II, 154-161, The Am. Ceram. Soc., Westerville, USA (1988).
  21. B. Xia, L. Duan, and Y. Xie, $ZrO_2$ nanopowders prepared by low-temperature vapor-phase hydrolysis, J. Am. Ceram. Soc., 83 1077-1080 (2000).
  22. W. D. Kingery, H. K. Bowen, and D. R. Uhlman, Introduction to Ceramics, 2nd ed., 307-330, John Wiley, NY, USA (1976).
  23. S. S. Woo and H. K. Kim, Synthesis and characterization of nanoporous zirconia, J. Korean Powder Metall. Inst., 14, 309-314 (2007). https://doi.org/10.4150/KPMI.2007.14.5.309
  24. H. J. Noh, J. K. Lee, D. S. Seo, and K. H. Hwang, Preparation of zirconia nanocrystalline powder by the hydrothermal treatment at low temperature, J. Korean Ceram. Soc., 39, 308-314 (2002). https://doi.org/10.4191/KCERS.2002.39.3.308

Cited by

  1. 투명 유-무기 하이브리드 하드코팅 필름 제조 및 SiO2 또는 ZrO2함량에 따른 필름의 물성 vol.27, pp.1, 2014, https://doi.org/10.3740/mrsk.2017.27.1.12