• Title/Summary/Keyword: O surface diffusion

Search Result 371, Processing Time 0.059 seconds

Microstructure and Dielectric Properties of (Sr·Ca)TiO3-based Ceramics Exhibiting Nonlinear Characteristics (비선형 특성을 갖는 (Sr·Ca)TiO3계 세라믹의 미세구조 및 유전 특성)

  • 최운식;강재훈;박철하;김진사;조춘남;송민종
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.1
    • /
    • pp.24-29
    • /
    • 2002
  • In this paper, the microstructure and the dielectric properties of Sr$\_$1-x/CaxTiO$_3$(0$\leq$x$\leq$0.2)-based grain boundary layer ceramics were investigated. The sintering temperature and time were 1420∼152 0$\^{C}$ and 4 hours in N$_2$ gas, respectively. The average grain size and the lattice constant were decreased with increasing content of Ca, but the average grain size was increased with increase of sintering temperature. The second phase foamed by the thermal diffusion of CuO from the surface leads to verb high apparent dielectric constant, $\xi$$\_$r/>50000 and low dielectric loss, tan$\delta$<0.05. X-ray diffraction patterns of Sr$\_$1-x/CaxTiO$_3$ exhibited cubic structure, and the peaks shifted upward and the peak intensity were decreased with x. This is due to the lattice contraction as Sr is replaced by Ca with a smaller ionic radius. The specimens treated thermal diffusion for 2hrs in 1150$\^{C}$ exhibited nonlinear current-voltage characteristic, and its nonlinear coefficient(a) was overt 7.

Formation of a MnSixOy barrier with Cu-Mn alloy film deposited using PEALD

  • Moon, Dae-Yong;Hwang, Chang-Mook;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.229-229
    • /
    • 2010
  • With the scaling down of ultra large integrated circuits (ULSI) to the sub-50 nm technology node, the need for an ultra-thin, continuous and conformal diffusion barrier and Cu seed layer is increasing. However, diffusion barrier and Cu seed layer formation with a physical vapor deposition (PVD) method has become difficult as the technology node is reduced to 30 nm and beyond. Recent work on self-forming barrier processes using PVD Cu alloys have attracted great attention due to the capability of conformal ultra-thin barrier formation using a simple technique. However, as in the case of the conventional barrier and Cu seed layer, PVD of the Cu alloy seed layer will eventually encounter the difficulty in conformal deposition in narrow line trenches and via holes. Atomic layer deposition (ALD) has been known for its good step coverage and precise thickness control, and is a candidate technique for the formation of a thin conformal barrier layer and Cu seed layer. Conformal Cu-Mn seed layers were deposited by plasma enhanced atomic layer deposition (PEALD) at low temperature ($120^{\circ}C$), and the Mn content in the Cu-Mn alloys were controlled form 0 to approximately 10 atomic percent with various Mn precursor feeding times. Resistivity of the Cu-Mn alloy films decreased by annealing due to out-diffusion of Mn atoms. Out-diffused Mn atoms were segregated to the surface of the film and interface between a Cu-Mn alloy and $SiO_2$, resulting in self-formed $MnO_x$ and $MnSi_xO_y$, respectively. No inter-diffusion was observed between Cu and $SiO_2$ after annealing at $500^{\circ}C$ for 12 h, indicating an excellent diffusion barrier property of the $MnSi_xO_y$. The adhesion between Cu and $SiO_2$ was enhanced by the formation of $MnSi_xO_y$. Continuous and conductive Cu-Mn seed layers were deposited with PEALD into 32 nm $SiO_2$ trench, enabling a low temperature process, and the trench was perfectly filled using electrochemical plating (ECD) under conventional conditions. Thus, it is the resultant self-forming barrier process with PEALD Cu-Mn alloy film as a seed layer for plating Cu that has further potential to meet the requirement of the smaller than 30 nm node.

  • PDF

Synthesis and Characterization of the Ag-doped TiO2

  • Lee, Eun Kyoung;Han, Sun Young
    • Elastomers and Composites
    • /
    • v.57 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • In this study, the photo-deposition method was used to introduce Ag onto the surface of TiO2 to synthesize an Ag-TiO2 composite. The effects of the varying amounts of AgNO3 precursor and annealing time periods on the Ag content in the composites, as well as their antibacterial characteristics under visible light conditions were studied. SEM analysis revealed the spherical morphology of the Ag-TiO2 composite. Compared with TiO2, the Ag particles were too small to be observed. An XPS analysis of the Ag-TiO2 surface confirmed the Ag content and showed the peak intensities for elements such as Ag, Ti, O, C, and Si. The highest Ag content was observed when 33.3 wt.% of AgNO3 and an annealing time of 6 h were employed; this was the optimum annealing time for Ti-Ag-O bonding, in that the lowest number of O bonds and the highest number of Ag bonds were confirmed by XPS analysis. Superior antibacterial properties against Bacillus and Escherichia coli, in addition to the widest inhibition zones were exhibited by the Ag-TiO2 composite with an increased Ag content in a disk diffusion test, the bacterial reduction rate against Staphylococcus aureus and Escherichia coli being 99.9%.

ALD-assisted Hybrid Processes for improved Corrosion Resistance of Hard coatings

  • Wan, Zhixin;Kwon, Se-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.105-105
    • /
    • 2016
  • Recently, high power impulse magnetron sputtering (HIPIMS) has attracted considerable attentions due to its high potential for industrial applications. By pulsing the sputtering target with high power density and short duration pulses, a high plasma density and high ionization of the sputtered species can be obtained. HIPIMS has exhibited several merits such as increased coating density, good adhesion, microparticle-free and smooth surface, which make the HIPIMS technique desirable for synthesizing hard coatings. However, hard coatings present intrinsic defects (columnar structures, pinholes, pores, discontinuities) which can affect the corrosion behavior, especially when substrates are active alloys like steel or in a wear-corrosion process. Atomic layer deposition (ALD), a CVD derived method with a broad spectrum of applications, has shown great potential for corrosion protection of high-precision metallic parts or systems. In ALD deposition, the growth proceeds through cyclic repetition of self-limiting surface reactions, which leads to the thin films possess high quality, low defect density, uniformity, low-temperature processing and exquisite thickness control. These merits make ALD an ideal candidate for the fabrication of excellent oxide barrier layer which can block the pinhole and other defects left in the coating structure to improve the corrosion protection of hard coatings. In this work, CrN/Al2O3/CrN multilayered coatings were synthesized by a hybrid process of HIPIMS and ALD techniques, aiming to improve the CrN hard coating properties. The influence of the Al2O3 interlayer addition, the thickness and intercalation position of the Al2O3 layer in the coatings on the microstructure, surface roughness, mechanical properties and corrosion behaviors were investigated. The results indicated that the dense Al2O3 interlayer addition by ALD lead to a significant decrease of the average grain size and surface roughness and greatly improved the mechanical properties and corrosion resistance of the CrN coatings. The thickness increase of the Al2O3 layer and intercalation position change to near the coating surface resulted in improved mechanical properties and corrosion resistance. The mechanism can be explained by that the dense Al2O3 interlayer acted as an excellent barrier for dislocation motion and diffusion of the corrosive substance.

  • PDF

Characteristic of Copper Films on Molybdenum Substrate by Addition of Titanium in an Advanced Metallization Process (Mo 하지층의 첨가원소(Ti) 농도에 따른 Cu 박막의 특성)

  • Hong, Tae-Ki;Lee, Jea-Gab
    • Korean Journal of Materials Research
    • /
    • v.17 no.9
    • /
    • pp.484-488
    • /
    • 2007
  • Mo(Ti) alloy and pure Cu thin films were subsequently deposited on $SiO_2-coated$ Si wafers, resulting in $Cu/Mo(Ti)/SiO_2$ structures. The multi-structures have been annealed in vacuum at $100-600^{\circ}C$ for 30 min to investigate the outdiffusion of Ti to Cu surface. Annealing at high temperature allowed the outdiffusion of Ti from the Mo(Ti) alloy underlayer to the Cu surface and then forming $TiO_2$ on the surface, which protected the Cu surface against $SiH_4+NH_3$ plasma during the deposition of $Si_3N_4$ on Cu. The formation of $TiO_2$ layer on the Cu surface was a strong function of annealing temperature and Ti concentration in Mo(Ti) underlayer. Significant outdiffusion of Ti started to occur at $400^{\circ}C$ when the Ti concentration in Mo(Ti) alloy was higher than 60 at.%. This resulted in the formation of $TiO_2/Cu/Mo(Ti)\;alloy/SiO_2$ structures. We have employed the as-deposited Cu/Mo(Ti) alloy and the $500^{\circ}C-annealed$ Cu/Mo(Ti) alloy as gate electrodes to fabricate TFT devices, and then measured the electrical characteristics. The $500^{\circ}C$ annealed Cu/Mo($Ti{\geq}60at.%$) gate electrode TFT showed the excellent electrical characteristics ($mobility\;=\;0.488\;-\;0.505\;cm^2/Vs$, on/off $ratio\;=\;2{\times}10^5-1.85{\times}10^6$, subthreshold = 0.733.1.13 V/decade), indicating that the use of Ti-rich($Ti{\geq}60at.%$) alloy underlayer effectively passivated the Cu surface as a result of the formation of $TiO_2$ on the Cu grain boundaries.

Effect of Sintering Atmosphere on the Densification and Grain Growth of Uranium Dioxide at the Final-Stage Sintering (소결 분위기에 따른 이산화 우라늄의 치밀화 및 입자성장)

  • 이영우
    • Journal of Powder Materials
    • /
    • v.4 no.3
    • /
    • pp.214-221
    • /
    • 1997
  • The densification and grain growth mechanisms of $UO_{2+x}$ in $H_2$ and in $CO_2$ have been investigated. Uranium dioxide powder compacts were sintered at 1$700^{\circ}C$ in $H_2$ or at 110$0^{\circ}C$ in $CO_2$ for various times from 0.5 h to 16 h. The grain size and density of the specimens were measured. From the measured data, the mechanisms of the densification and grain growth were determined by use of available kinetic equations which express the relations between densification and grain growth. In both atmospheres, it has been found that the densification was controlled by the lattice diffusion and the grain growth by the surface diffusion of atoms around pores. It appears that the surface diffusivity as well as the lattice diffusivity increase considerably with the increase in O/U ratio in the specimen.

  • PDF

Color Enhancement by Oxygen Torch in Blue Sapphires (블루사파이어와 루비의 고온산소 화염처리에 의한 색향상)

  • Song Oh Sung;Kim Sang Yeob
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.2
    • /
    • pp.83-87
    • /
    • 2005
  • We enhanced the color of blue sapphires and rubies successfully by using a oxygen-propane torch flame annealing, which had not been employed so far. We confirmed that about 1 mm-thick de-coloring of the corundum samples were available with 60 minutes flame annealing through eye evaluation, color coordination characterization, and methylene iodide immersion observation. We also suggest that the color centers such as $[Fe_{Al}^{\cdot}]$ may transform into transparent $[Fe_{Al}^{x}],\;[Cr_{A1}^{x}]$ sites with $[V_o^']$ generation at the elevated temperature in oxygen-rich atmosphere by diffusion mechanism. Our results implied that the longer diffusion time and the higher oxygen partial pressure might lead to the better de-coloring enhancement in corundum gem stones.

High Temperature Oxidation of Ti-15Mo-5Zr-3Al Alloy (Ti-15Mo-5Zr-3Al 합금의 고온산화)

  • 우지호;김종성;백종현;이동복
    • Journal of the Korean institute of surface engineering
    • /
    • v.31 no.5
    • /
    • pp.278-285
    • /
    • 1998
  • Alloys of Ti-15Mo-5Zr-3Al(wt%) were oxidized in air between 700 and $900^{\circ}C$. It was found that the oxidation resistance is much better than that of either commercially available pure Ti-6Al-4V(wt%) alloys. The oxide scales were primarily composed of thick Ti-ox-ides which were formed by the inward diffusion of oxygen from the atmosphere. At higher temperatures a thin $\alpha$-$Al_2O_3$ layer was formed on Ti-oxides owing to the outward diffusion of Al from the base alloys. Molybdenum, the noblest metal among the alloy components, was predominantly present behind the oxide-substrate interface. Zirconium, an oxygen active metal, was present at both the oxide layer and the substrate.

  • PDF

Characterization of Zn diffusion in TnP Cy $Zn_3P_2$ thin film and rapid thermal annealing (RHP에서의 $Zn_3P_2$ 박막 및 RTA법에 의한 Zn 확산의 특성)

  • 우용득
    • Journal of the Korean Vacuum Society
    • /
    • v.13 no.3
    • /
    • pp.109-113
    • /
    • 2004
  • Zn diffusions in InP have been studied by electrochemical capacitance voltage. The InP layer was grown by metal organic chemical vapor deposition, and $Zn_3P_2$ thin film was deposited on the epitaxial substrates. The samples annealed in a rapid thermal annealing. It is demonstrated that surface hole concentration as high as $1\times10^{19}\textrm{cm}^{-3}$ can be achieved. When the Zn diffusion was carried at $550^{\circ}C$ and 5-20 min., the diffusion depth of hole concentration moves from 1.51$\mu\textrm{m}$ to 3.23 $\mu\textrm{m}$, and the diffusion coeffcient of Zn is $5.4\times10^{-11}\textrm{cm}^2$/sec. After activation, the concentration is two orders higher than that of untreated sample at 0.30 $\mu\textrm{m}$ depth. As the annealing time is increase, the hole concentration remains almost constant, except deep depth. It means that excess Zn interstitials exist in the doped region is rapidly diffusion into the undoped region and convert into substitutional When the thickness of $SiO_2$ thin film is above 1,000$\AA$, the hole concentration becomes stable distribution.

Separation of $CO_2$ and $N_2$ with a NaY Zeolite Membrane under Various Permeation Test Conditions

  • Cho, Churl-Hee;Yeo, Jeong-Gu;Ahn, Young-Soo;Han, Moon-Hee;Hyun, Sang-Hoon
    • Korean Membrane Journal
    • /
    • v.8 no.1
    • /
    • pp.21-30
    • /
    • 2006
  • A faujasite NaY zeolite membrane was prepared on a tubular ${\alpha}-Al_2O_3$ support by the secondary growth process, and effects of permeation test conditions on the $CO_2/N_2$ separation were investigated. A NaY zeolite membrane with good $CO_2/N_2$ separation was successfully synthesized by using the hydrothermal solution ($Al_2O_3:SiO_2:Na_2O:H_2O$ = 1:6:14:840 in a molar base): at a permeation temperature of $30^{\circ}C$, its $CO_2$ permeance and $CO_2/N_2$ separation factor were $2.5{\times}10^{-7}mol/m^2secPa$ and 34, respectively. The $CO_2$ and $N_2$ permeations were highly dependent on permeation test conditions (feed composition, feeding rate, feed pressure, He sweeping rate and permeation temperature). The results indicated that (i) $CO_2$ and $N_2$ permeations through NaY zeolite membrane are governed by surface and micropore diffusions, respectively, (ii) the preparation of NaY zeolite membrane with a large permeating area is one of the most difficult hurdles for its real applications, and (iii) the retardation of $N_2$ permeation is an effective key to improve $CO_2/N_2$ separation factor in NaY zeolite membrane.