Browse > Article
http://dx.doi.org/10.7473/EC.2022.57.1.1

Synthesis and Characterization of the Ag-doped TiO2  

Lee, Eun Kyoung (Department of Pharmaceutical Biomedical Engineering, Cheongju University)
Han, Sun Young (Department of Applied Chemistry, Cheongju University)
Publication Information
Elastomers and Composites / v.57, no.1, 2022 , pp. 1-8 More about this Journal
Abstract
In this study, the photo-deposition method was used to introduce Ag onto the surface of TiO2 to synthesize an Ag-TiO2 composite. The effects of the varying amounts of AgNO3 precursor and annealing time periods on the Ag content in the composites, as well as their antibacterial characteristics under visible light conditions were studied. SEM analysis revealed the spherical morphology of the Ag-TiO2 composite. Compared with TiO2, the Ag particles were too small to be observed. An XPS analysis of the Ag-TiO2 surface confirmed the Ag content and showed the peak intensities for elements such as Ag, Ti, O, C, and Si. The highest Ag content was observed when 33.3 wt.% of AgNO3 and an annealing time of 6 h were employed; this was the optimum annealing time for Ti-Ag-O bonding, in that the lowest number of O bonds and the highest number of Ag bonds were confirmed by XPS analysis. Superior antibacterial properties against Bacillus and Escherichia coli, in addition to the widest inhibition zones were exhibited by the Ag-TiO2 composite with an increased Ag content in a disk diffusion test, the bacterial reduction rate against Staphylococcus aureus and Escherichia coli being 99.9%.
Keywords
Ag-$TiO_2$ composite; $AgNO_3$ addition; annealing time; intensity; antibacterial properties;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 H. Y. Jung and S. W. Lee, "Study on Antibacterial Activity of Ag Nanometal-deposited TiO2 Prepared by Sonochemical Reduction Method", Appl. Chem. Eng., 25, 84 (2014).   DOI
2 M. C. Kim, "The characteristics of Mn-TiO2 catalyst for visible-light photocatalyst", Anal. Sci. & Technol., 24, 493 (2011).   DOI
3 S. W. Cho, Y. I. Lee, L. H. Kim, and D. W. Jung, "Photocatalytic and Antipathogenic Effects of TiO2/CuxO (1 < x < 2)", Korean Chem. Soc., 57, 4 (2013).
4 J. Y Kim, S. E. Kim, J. E. Kim, M. Jo, J. C. Lee, and J. Y. Yoon, "The biocidal activity and mechanism of nano sized silver particles", J. Korean Soc. Environ. Eng., 27, 771 (2004).
5 H. Chakhtouna, H. Benzeid, N. Zari1, A. E. K. Qaiss, and R. Bouhfid, "Recent progress on Ag/TiO2 photocatalysts: photocatalytic and bactericidal behaviors", Environ. Sci. Pollut. Res. Int., 28, 44638 (2021).   DOI
6 S. Ahmed, M. Ahmad, B. L. Swami, and S. Ikram, "A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise", J. Adv. Res., 7, 17 (2016).   DOI
7 I. S. Hwang, J. Y. Cho, J. H. Hwang, B. M. Hwang, H. M. Choi, J. Y. Lee, and D. G. Lee, "Antimicrobial Effects and Mechanism(s) of Silver Nanoparticle", J. Microbiol. Biotechnol, 39, 2 (2011).
8 M. R. Khan, T. W. Chuan, A. Yousuf, M. N. K. Chowdhury, and C. K. Cheng, "Schottky barrier and surface plasmonic resonance phenomena towards the photocatalytic reaction: study of their mechanisms to enhance photocatalytic activity", Catal. Sci. & Technol., 5, 2522 (2015).   DOI
9 S. Hofmann, "Auger- and X-Ray Photoelectron Spectroscopy in Materials Science", Springer, New York, 2013.
10 H. J. Kwon, J. R. Cha, and M. S. Gong, "Facile Preparation of Antibacterial Plastisol/Ag Composites Based on Silver Carbamate and Their Properties", Polymer, 41, 860 (2017).   DOI
11 B. Gaur, B. Lochab, V. Choudhary, and I. K. Varma, "Azido Polymers-Energetic Binders for Solid Rocket Propellants", Macromol. Sci. Part C, 43, 505 (2003).   DOI
12 S. H. Park, H. G. Lee, J. Y. Lee, J. H. Choi, T. H. Park, S. A. Yang, D. S. Bang, and K. H. Jhee, "Antimicrobial Activity and Flame Retardancy of Polyvinyl Chloride Composite Containing Inorganic Bacteriocide and Aluminum Trihydroxide", Polymer, 42, 249 (2017).
13 D. R. Monterio, L. F. Gorup, A. S. Takamiya, A. C. Ruvollo- Filho, E. R. de Camarogo, and D. B. Barbosa, "The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver", J. Antimicrob, 34, 103 (2009).   DOI
14 P. Spacciapoli, D. Buxton, D. Rothstein, and P. Friden, "Antimicrobial activity of silver nitrate against periodontal pathogens" J. Periodontal Res., 36, 108 (2001).   DOI
15 B. C. Bai, J. S. Im, J. G. Kim, and Y. S. Lee, "Photo-catalytic Degradation on B-, C-, N-, and F Element co-doped TiO2 under Visible-light Irradiation", Appl. Chem. Eng., 21, 29 (2010).
16 S. J. Lee, "Removal of Reactive Orange 16 by the Ag/TiO2 Composite Produced from Micro-emulsion Method", J. Geo-Environ. Soc., 20, 6 (2019).
17 J. H. Lee, S. J. Heo, J. I. Youn, Y. J. Kim, I. K. Kim, K. W. Jang, and H. J. Oh, "Photocatalytic Characteristics of PbS/ ZnO/TiO2 Nanotube Composite", Korean J. Mater. Res., 27, 10 (2017).
18 N. W. Choi, Y. J. Jo, and C. K. Kim, "Polyethersulfone Ultrafiltration Membranes Containing Surface Treated Silica Nanoparticles for Improvement of Antibacterial Activity and Hydrophilicity", Polym. Korea, 40, 245 (2016).   DOI
19 B. M. Kim and J. S. Kim, "Photocatalytic Properties of the Ag-Doped TiO2 Prepared by Sol-Gel Process/Photodeposition", Korean J. Mater. Res., 26, 73 (2016).   DOI
20 R. Khalid and Z. Hussain, "Minireview: Silver-Doped Titanium Dioxide and Silver-Doped Zinc Oxide Photocatalysts", Nanotechnology, 5, 892 (2017).
21 L. Y. Zhang, J. You, Q. W. Li, Z. H. Dong, Y. J. Zhong, Y. L. Han, and Y. H. You, "Preparation and Photocatalytic Property of Ag Modified Titanium Dioxide Exposed High Energy Crystal Plane (001)", Coatings, 10, 27 (2020).   DOI
22 S. M. Kim, J. M. Oh, & S. M. Koo, "Annealing Effect on controlling Self-Organized Ag/Ti Nanoparticles on 4H-SiC Substrat", Ikeee, 20, 177 (2016).   DOI
23 J. H. Son, Y. H. Song, and J. L. Lee, "Structural Analysis of Ag Agglomeration in Ag-based Ohmic Contact to p-type GaN", KVS, 20, 127 (2011).