• Title/Summary/Keyword: Numerical experiment

Search Result 2,465, Processing Time 0.046 seconds

Application of the Photoelastic Experimental Hybrid Method with New Numerical Method to the High Stress Distribution (고응력 분포에 새로운 광탄성실험 하이브릿법 적용)

  • Hawong, Jai-Sug;Tche, Konstantin;Lee, Dong-Hun;Lee, Dong-Ha
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.73-78
    • /
    • 2004
  • In this research, the photoelastic experimental hybrid method with Hook-Jeeves numerical method has been developed: This method is more precise and stable than the photoelastic experimental hybrid method with Newton-Rapson numerical method with Gaussian elimination method. Using the photoelastic experimental hybrid method with Hook-Jeeves numerical method, we can separate stress components from isochromatics only and stress intensity factors and stress concentration factors can be determined. The photoelastic experimental hybrid method with Hook-Jeeves had better be used in the full field experiment than the photoelastic experimental hybrid method with Newton-Rapson with Gaussian elimination method.

  • PDF

A HIGHER ORDER NUMERICAL SCHEME FOR SINGULARLY PERTURBED BURGER-HUXLEY EQUATION

  • Jiwrai, Ram;Mittal, R.C.
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.813-829
    • /
    • 2011
  • In this article, we present a numerical scheme for solving singularly perturbed (i.e. highest -order derivative term multiplied by small parameter) Burgers-Huxley equation with appropriate initial and boundary conditions. Most of the traditional methods fail to capture the effect of layer behavior when small parameter tends to zero. The presence of perturbation parameter and nonlinearity in the problem leads to severe difficulties in the solution approximation. To overcome such difficulties the present numerical scheme is constructed. In construction of the numerical scheme, the first step is the dicretization of the time variable using forward difference formula with constant step length. Then, the resulting non linear singularly perturbed semidiscrete problem is linearized using quasi-linearization process. Finally, differential quadrature method is used for space discretization. The error estimate and convergence of the numerical scheme is discussed. A set of numerical experiment is carried out in support of the developed scheme.

Numerical Solutio of Inverse Problem of Fuzzy Modeling with Pseudo First Order Approzimation

  • Ikoma, Norikazu;Hirota, Kaoru
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1230-1233
    • /
    • 1993
  • Numerical solution of inverse problem of Takagi-Sugeno fuzzy model is proposed. The method is located on the application of numerical optimization to the fuzzy model. Steepest descent method is used for the numerical optimization. We use the linear approximation of fuzzy model, called pseudo first order approximation, by fixing the membership value on the neighborhood of the corresponding input. It is introduced in order to reduce the difficulty of optimization process. The efficiency of this method is shown by a numerical experiment.

  • PDF

Numerical modelling of coupled thermo-hydro-mechanical behavior of Heater Experiment-D (HE-D) at Mont Terri rock laboratory in Switzerland (스위스 Mont Terri rock laboratory에서 수행된 암반 히터시험(HE-D)에 대한 열-수리-역학적 복합거동 수치해석)

  • Lee, Changsoo;Choi, Heui-Joo;Kim, Geon-Young
    • Tunnel and Underground Space
    • /
    • v.30 no.3
    • /
    • pp.242-255
    • /
    • 2020
  • The numerical simulations of Heater Experiment-D (HE-D) at the Mont Terri rock laboratory in Switzerland were performed to investigate an applicability of FLAC3D to reproduce the coupled thermo-hydro-mechanical (THM) behaviour in Opalinus Clay, as part of the DECOVLEX-2015 project Task B. To investigate the reliability of numerical simulations of the coupled behaviour using FLAC3D code, the simulation results were compared with the observations from the in-situ experiment, such as temperature at 16 sensors, pore pressure at 6 sensors, and strain at 22 measurement points. An anisotropic heat conduction model, fluid flow model, and transversely isotropic elastic model in FLAC3D successfully represented the coupled thermo-hydraulic behaviour in terms of evolution for temperature and pore pressure, however, performance of the models for mechanical behavior is not satisfactory compared with the measured strain.

Assessing the Influence Radius of a Water Treatment System Installed in a Reservoir Using Tracer Experiment and 3D Numerical Simulation (추적자 실험 및 3차원 수치모의를 이용한 저수지 수처리 장치의 영향반경 평가)

  • Park, Hyung Seok;Lee, Eun Ju;Ji, Hyun Seo;Choi, Sun Hwa;Chun, Se Woong
    • Journal of Korean Society of Water Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.3-12
    • /
    • 2018
  • The objective of this study was to evaluate the radius of influence of effluent of water treatment system developed for the purpose of improvement of reservoir water quality using fluorescent dye (Rhodamine-WT) tracer experiment and 3-D numerical model. The tracer experiment was carried out in a medium-sized agricultural reservoir with a storage capacity of $227,000m^3$ and an average depth of 1.6 m. A guideline with a total length of 160 m was installed at intervals of 10 m in the horizontal direction from the discharge part, and a Rhodamine measurement sensor (YSI 6130, measurement range $0-200{\mu}g/L$) was used to measure concentration changes in time, distance, and depth. Experimental design was established in advance through Jet theory and the diffusion process was simulated using ELCOM, a three dimensional hydraulic dynamics model. As a result of the study, the direct effect radius of the jet emitted from the applied water treatment system was about 50-70 m, and the radius of physical effect by the advection diffusion was judged to be 100-120 m. The numerical simulations of effluent advection-diffusion of the water treatment system using ELCOM showed very similar results to those of the impact radius analysis using the tracer experiment and jet flow empirical equations. The results provide valuable information on the spatial extent of the water quality improvement devices installed in the reservoir and the facility layout design.

Estimation of the Water Surface Slope by the River Bend Curvature and Flood Discharge (하천 만곡률과 홍수량에 따른 수면경사도 산정)

  • Choi, Han-Kuy;Lee, Mun-Hee;Baek, Hyo-Sun;Park, Soo-Jin
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.2 s.25
    • /
    • pp.65-71
    • /
    • 2007
  • In this research, we made a one and two-dimensional analysis of numerical data collected from the bend curvature of a bended river section. According to the result from the numerical analysis, the inflow & output angle caused a water level deviation which increased with an increase of the flood discharge. From the water level deviation of our two-dimensional numerical model, we obtained the maximum slope of 6,67% when the inflow and output angle was 105 degrees and the flood discharge was 500 CMS. As for the right side, the differences with the one-dimensional numerical model were reduced when the angle was more than $90^{\circ}$. As for the left side the differences were reduced when the angle was more than $105^{\circ}$. For a river with more than 90 degrees bend curvature, a hydraulic experiment would be more appropriate than a numerical analysis.

Numerical Simulation of Triaxial Compression Test Using the GREAT Cell: Hydro-Mechanical Experiment (GREAT 셀을 이용한 삼축압축시험의 수치모사: 수리역학 실험)

  • Dohyun Park;Chan-Hee Park
    • Tunnel and Underground Space
    • /
    • v.33 no.2
    • /
    • pp.83-94
    • /
    • 2023
  • Unlike the conventional triaxial test cells for cylindrical specimens, which impose uniform lateral confining pressures, the GREAT (Geo-Reservoir Experimental Analogue Technology) cell can exert differential radial stresses using eight independently-controlled pairs of lateral loading elements and thereby generate horizontal stress fields with various magnitudes and orientations. In the preceding companion paper, GREAT cell tests were numerically simulated under different mechanical loading conditions and the validity of the numerical model was investigated by comparing experimental and numerical results for circumferential strain. In the present study, we simulated GREAT cell tests for an artificial sample containing a fracture under both mechanical loading and fluid flow conditions. The numerical simulation was carried out by varying the mechanical properties of the fracture surface, which were unknown. The numerical responses (circumferential strains) of the sample were compared with experimental data and a good match was found between the numerical and experimental results under certain mechanical conditions of the fracture surface. Additionally, the effect of fluid flow conditions on the mechanical behavior of the sample was investigated and discussed.

Analysis of Flow Velocity Change in Blade Installed Shroud System for Tidal Current Generation (블레이드가 설치된 조류발전용 쉬라우드 시스템 내 유속 변화 분석)

  • Lee, Uk Jae;Han, Seok Jong;Jeong, Shin Taek;Lee, Sang Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.1
    • /
    • pp.9-16
    • /
    • 2019
  • Flow velocity changes in the shroud system for tidal current power generation due to experimental flow velocities and blade geometry changes were analyzed by hydraulic experiment and numerical simulation. Through the hydraulic experiment, flow velocities at inlet of shroud system and RPM according to blade geometry were measured, and numerical simulation was used to analyze flow velocity changes in shroud. When the experimental flow velocity was increased by about 28% and the shape of the airfoil was applied, the measured flow velocity at the shroud inlet tended to increase by up to about 56%. On the other hand, when airfoil-shaped blades were installed, the flow velocity at the inlet tended to increase by up to 14% compared to conventional blades, and RPM was also the highest at the same conditions. The hydraulic experiment and numerical simulation results showed an error of about 13%, and the trends of the flow velocity changes in each result are similar. Numerical simulation of the flow velocity changes in the shroud showed that the flow velocity tended to increase 1.7 times at the front of the blade compared to the inlet. The results of the flow velocity change analysis in the shroud system obtained from this study will provide the basic data necessary for the development of efficient shroud system for tidal current power generation.

The behaviour of structures under fire - numerical model with experimental verification

  • Toric, Neno;Harapin, Alen;Boko, Ivica
    • Steel and Composite Structures
    • /
    • v.15 no.3
    • /
    • pp.247-266
    • /
    • 2013
  • This paper presents a comparison of results obtained by a newly developed numerical model for predicting the behaviour of structures under fire with experimental study carried out on heated and simply supported steel beam elements. A newly developed numerical model consists of three submodels: 3D beam model designed for calculating the inner forces in the structure, 2D model designed for calculation of stress and strain distribution over the cross section, including the section stiffness, and 3D transient nonlinear heat transfer model that is capable of calculating the temperature distribution along the structure, and the distribution over the cross section as well. Predictions of the calculated temperatures and vertical deflections obtained by the numerical model are compared with the results of the inhouse experiment in which steel beam element under load was heated for 90 minutes.