고응력 분포에 새로운 광탄성실험 하이브릿법 적용

황재석[†] · Konstantin Tche^{*} · 이동훈^{*} · 이동하^{*}

Application of the Photoelastic Experimental Hybrid Method with New Numerical Method to the High Stress Distribution

Jai-Sug Hawong, Konstantin Tche, Dong-Hun Lee and Dong-Ha lee

Key Words: Conformal mapping function(사상함수), Photoelastic experimental hybrid method(광탄성 실험 하이브릿업), Hook-Jeeves numerical method(후크-지이브 수치해석법), Newton-Raphson numerical method(뉴우턴-랲슨 수치해석법), Stress function(응력함수), Airy stress function(에어리 응력 함수), Stress components(응력성분), Stress contour line(등 응력선도), Stress intensity factor(응력 확대 계수)

Abstract

In this research, the photoelastic experimental hybrid method with Hook-Jeeves numerical method has been developed: This method is more precise and stable than the photoelastic experimental hybrid method with Newton-Rapson numerical method with Gaussian elimination method. Using the photoelastic experimental hybrid method with Hook-Jeeves numerical method, we can separate stress components from isochromatics only and stress intensity factors and stress concentration factors can be determined. The photoelastic experimental hybrid method with Hook-Jeeves had better be used in the full field experiment than the photoelastic experimental hybrid method with Newton-Rapson with Gaussian elimination method.

1. 서 론

1816 년 Brewster⁽¹⁾는 복굴절을 이용하여 응력측 정 가능성을 발표한이래 광탄성 실험은 다양하게 발전되어 왔다. 1950 년대에서는 Heteny⁽²⁾, Hiltscher⁽³⁾, Frocht⁽⁴⁾, Moench⁽⁵⁾, 西田⁽⁶⁾ 등이 각 각 모델재금, 실험방법 등에 관하여 독자적 연구 하여 왔다. 1950 년대 이후에는 동적광탄성 실험법 ^(7,8,9,10), 직교이방성 재료의 광탄성해석^(11,12,13,14) 등이 다양하게 발전되어 왔다. 특히 1970 년대 이 후에는 광탄성 실험법이 정적파괴 역학과 동적 파 괴역학에 다양하게 이용되어 왔다.^(15,16,17)

회원	, 영남대학교	기계공학부
----	---------	-------

* 비회원, 영남대학교 대학원 기계공학부

이 중에서는 1984 년도에는 R·J·Sanford 은 정적 광탄성 실험법으로 응력확대계수를 구할 수 있는 Gaussian 소거법을 이용한 Newton-Rapson 의 수치 해석법을 이용한 비선형 최소자승을 제외하였 다. (18) 이 방법과 개념은 광탄성실험으로서 정적 및 동적 응력확대계수를 구하는데 다양하게 사용 되어 왔다. (19,20,21) 이 비선형 최소자승법도 등색선무늬만으로 서로 응력성분을 분리할 수 있고, 정적 및 동적 응력확 대계수와 응력집중계수 등을 구할 수 있는 광탄성 실험 하이브릿법에 이용되어 왔다.^(22,23,24,25,26,27) 그러나 이 방법은 고응력 분포 상태에서는 수렴 하지 않고 종종 발산하는 경우가 많고 불안한 경 우가 많으므로 본 연구에서는 Gaussian 제거법을 이용한 Newton-Raphson 수치해석법도 더 정밀하고 언제나 수렴하면서 안전성이 있는 Hook-Jeeves 수 치해석법을 이용한 광탄성 실험 하이브릿법을 개 발하는 것이 주목적이고 세부목적은 아래와 같다.

- Hook-Jeeves 수치해석법을 이용한 정적 광탄 성 실험 하이브릿법의 유효성 확인
- 고응력 분포를 발생시키는 응력집중문제나 평면 파괴 역학문제에 이 방법의 적용유효성 확인
- 광탄성실험 하이브릿법에 Hook-Jeeves 의 수 치해석 적용 및 유효성 확인

2. 기본 이론

2.1 원형과 크랙의 사상함수(Conformal Mapping Function) Airy 응력함수 F(x,y)은 식(1)과 같다.

$$\sigma_{x} = \frac{\partial^{2} F(x, y)}{\partial y^{2}}, \ \sigma_{y} = \frac{\partial^{2} F(x, y)}{\partial x^{2}},$$
$$\tau_{xy} = -\frac{\partial^{2} F(x, y)}{\partial x \partial y}$$
(1)

그리고 등방성체의 응력함수 F(x,y)은 식(2)로서 나타낼 수 있다. 같다.

$$F = \operatorname{Re}\left[\int^{z} \psi(z) dz + \overline{z}\phi(z)\right]$$
(2)
$$\psi(z) = \chi'(z)$$

식(2)를 식(1)에 대입하면 평면문제의 응력성분 식(3)으로서 나타낼 수 있다.

$$\sigma_{x} = \operatorname{Re}\left\{2\phi'(z) - \left[\overline{z}\phi''(z) + \psi'(z)\right]\right\},$$

$$\sigma_{y} = \operatorname{Re}\left\{2\phi'(z) + \left[\overline{z}\phi''(z) + \psi'(z)\right]\right\},$$
 (3)

$$\tau_{xy} = \operatorname{Im}\left\{\overline{z}\phi''(z) + \psi'(z)\right\},$$

단 $\phi(z)$ 와 $\psi(z)$ 은 해석적 함수이다. 평면의 영역 R_{ζ} 를 Z-평면에 사상되는 사상함수(mapping function)은 식(4)로서 나타낼수 있다.

$$z = \omega(z), \tag{4}$$

Fig.1 처럼 x 축에 대하여 α 만큼 경사진 직선경 계(straight boundary)의 이웃 영역 Rz 영역으로 사 상되는 평면의 R_{ζ} 의 사상함수(conformal mapping function)은 식(9)와 같다.

$$\zeta = e^{-i\alpha} \left(z - z_0 \right) \tag{10}$$

Fig.1. Conformal mapping for a straight boundary.

구조물의 자유면에 외력이 작용하지 않으면 응 력이 존재하지 않는 자유면의 무응력조건(tractionfree 경계)에서, 즉 $\sigma_y = \tau_{xy} = 0$ 인 조건에서 얻어 지는 두 응력함수의 관계식은 식(11)과 같다.

$$\psi(\zeta) = -\overline{\phi(\zeta)} - \overline{\omega(\zeta)} \frac{\phi'(\zeta)}{\omega'(\zeta)} \tag{11}$$

그리고 응력함수 $\phi(z)$ 와 $\psi(z)$, 즉 사상함수 $Z = \omega(z)$ 의 역함수를 이용한 응력함수 $\phi(\zeta)$ 와 $\psi(\zeta)$ 은 해석적함수이므로 식(12)처럼 멱급수로 나타낼 수 있다.

$$\phi(\zeta) = \sum_{j=0}^{N} C_j \left(\zeta - \zeta_0\right)^j, \text{ where } C_j = a_j + ib_j \quad (12)$$

식(6),(7),(8),(9),(10),(11) 그리고 (12)을 이용하면, 응력함수는 식(13)처럼 나타낼수 있다.

$$\sigma_{x}(r,\theta) = \sum_{j=1}^{N} \operatorname{Re}\left\{C_{j}\left[2f\left(j,r,\theta\right) - g\left(j,r,\theta\right)\right] + \overline{C}_{j}f\left(j,r,\theta\right)\right\},\$$

$$\sigma_{y}(r,\theta) = \sum_{j=1}^{N} \operatorname{Re}\left\{C_{j}\left[2f\left(j,r,\theta\right) + g\left(j,r,\theta\right)\right] - \overline{C}_{i}f\left(j,r,\theta\right)\right\},\$$

$$\tau_{y}(r,\theta) = \sum^{N} \operatorname{Im}\left\{C_{j}g\left(j,r,\theta\right) - \overline{C}_{j}f\left(j,r,\theta\right)\right\}$$
(13)

이때 크랙인 경우의 각각 $f(j,r,\theta)$ 와 $g(j,r,\theta)$ 은 식(14)와 같다.

$$f(j,r,\theta) = f(j,z) = (-1)^{j} \frac{n}{2} z^{\frac{n}{2}-1}$$
$$g(j,r,\theta) = g(j,z) = \frac{n}{2} \left\{ \overline{z} \left(\frac{n}{2}-1\right) - \frac{n}{2} z \right\} z^{\frac{n}{2}-2}^{(14)}$$

2.2 광탄성실험 하이브릿법

등방체의 광응력 법칙⁽²⁸⁾은 식(15)와 같다.

$$\left(\frac{f \cdot N_{f}}{t}\right)^{2} = (\sigma_{x} - \sigma_{y})^{2} + (2\tau_{xy})^{2}$$
(15)

여기에서 f은 응력 프린지의(stress fringe value), t 은 시편의 두께, N_f 은 등색무늬차수이다. 식(15)에 식(13)을 대입하면 식(16)이 얻어진다.

$$\left(\frac{f \cdot N_{f}}{t}\right)^{2} = \left(\sigma_{x} - \sigma_{y}\right)^{2} + \left(2\tau_{xy}\right)^{2} =$$

$$= \left\{\sum_{j=1}^{N} 2a_{j} \operatorname{Re}\left[f\left(j, r, \theta\right) - g\left(j, r, \theta\right)\right] + \sum_{j=1}^{N} 2b_{j} \operatorname{Im}\left[f\left(j, r, \theta\right) + g\left(j, r, \theta\right)\right]\right\}^{2} + \left\{\sum_{j=1}^{N} 2a_{j} \operatorname{Im}\left[g\left(j, r, \theta\right) - f\left(j, r, \theta\right)\right] + \sum_{j=1}^{N} 2b_{j} \operatorname{Re}\left[f\left(j, r, \theta\right) + g\left(j, r, \theta\right)\right]\right\}^{2}$$

식(16)의 함수 $f(j,r,\theta)$ 와 $g(j,r,\theta)$ 은 구조물 의 자유표면의 기하학적 형상의 조건에 따라 식 (14)로 주어진다. 실험 데이터가 정확하게 측정되 고 경계조건을 정확하게 알면 식(16)은 정확하게 성립된다.

그러나 실험 데이터를 정확하게 측정할 수 없고 실험 현상에서 경계조건을 정확하게 알 수 없으므 로 식(16)은 완벽하게 성립되지 않는다. 그래서 식 (16)은 식(17)과 같이 변경할 수 있다.

식(17)에 수치해석법은 적용하면 오차 (\mathcal{E}_i^2) 의 어떤 범위를 만족하는 a_j 와 b_j 를 구할 수 있다. 이것을 식(12)에 대입하고 응력함수의 관계식인 식(11)을 이용하면 응력함수 $\phi(z)$ 와 $\psi(z)$ 를 구할 수 있다. 이 응력함수 $\phi(z)$ 와 $\psi(z)$ 를 식(3)에 대 입하면 응력성분도 구할 수 있다.

이러한 것을 구하는데 광탄성실험 데이터를 이 용하면 이러한 과정을 광탄성 실험 하이브릿법이 라 칭하였다. 식(17)을 간단히 식(18)로 나타낼 수 있다.

$$S(A) = S(a_j, b_j) = \sum_{i=1}^{M} (\varepsilon^i)^2$$
(18)

여기서 A = (A₁,...,A_{2N}) = (a₁,...,a_N, b₁,...,b_N)이고 M 은 데이타수이다.

3. 실험 및 실험방법

본 연구에 사용된 시편의 모양은 Fig.2 와 같고 하중조건과 기하학적 조건은 그림 아래에 서술되 어 있다.

(17)

2a=12mm, 16mm, 24mm, W=40mm, β=0°, 30°, 45°,

L=160mm, P=1.47kN, 1.17kN, 0.88kN.

Fig.2. Specimens for validation of the new

numerical technique.

본 연구에 사용된 광탄성 실험장치는 투과형 정 적 광탄성 실험 장치이다. 그리고 본 연구에 사용 된 정적 광탄성 실험 하이브릿법의 흐름도는 Fig.3 과 같다.

Fig.3. Flow chart for photoelastic experimental hybrid method.

본 연구에서는 Fig.3 과 같은 광탄성실험 하이브 릿법에 Gaussian 소거법을 이용한 Newton-Raphson 수치해석법과 Hook-Jeeves 수치해석법을 적용하여 응력함수의 계수를 계산하였다. 그 중에서 Hook-Jeeves 수치해석법의 흐름도는 Fig.4 와 같다.

Fig.4. Flow chart for Hook and Jeeves numerical method.

Gaussian 소거법을 이용한 Newton-Raphson 수치 해석법과 Hook-Jeeves 수치해석법을 이용한 광탄성 실험 하이브릿법을 이용하여 응력집중계수와 응력 확대계수도 구하였다. 이렇게 구한 응력집중계수 와 응력확대계수등을 각각 이론치와 비교하여 본 연구에서 개발된 Hook-Jeeves 수치해석법을 이용한 광탄성실험 하이브릿법의 유효성을 확인하였다.

또 광탄성실험 하이브릿법을 이용하여 구한 응 력성분들을 광응력 법칙에 적용하여 등색선무늬를 그래픽하였다. 이렇게 그래픽한 등색선무늬와 실 제 등색선무늬를 비교하여 본연구에서 개발된 Hook-Jeeves 수치해석법을 이용한 광탄성실험의 하 이브릿법의 유효성도 확인하였다.

4. 실험 결과 및 고찰

본 연구에서 개박된 Hook-Jeeves 수치해석법을 이용한 광탄성실험 하이브릿법의 고응력 분포의 적용 유효성을 확인하기 위하여 원공과 크랙을 가 진 유한 구형판(4 각판)에 단순인장이 작용하는 경우를 실험하였다. 이때 사용된 하중조건과 기하 학적 조건은 각각 Table.1.과 같다.

Table.1. Geometrical and loading conditions for the inclined crack specimens for validation of the new numerical technique, (β =30°.)

Specimen Number	Geometrical and loading conditions					
	W (mm)	2a (mm)	2a/W	t (mm)	P(kN)	σ ₀ (MPa)
1	40	12	0.3	6.23	1.47	5.9
2	40	16	0.4	5.79	1.17	5.0
3	40	24	0.6	6.08	0.88	3.6
ㅋ 개 스	ر ا ت ا		(0)		200	41-

크랙의 경사각도 (=β) 가 30° 이고 크랙길이변화(2a/w)가 0.3, 0.4 그리고 0.6 인 경우의 실험결과는 이중에서 2a/w=0.4 인 경우의 등색선무늬는 Fig.5와 같다.

Fig.5. Actual isochromatic fringe patterns (2a/w=0.4, ß=30°.)

(2*a*/*w*) 가 0.4 인 경우의 크랙근방의 4 각형 내부의 실제 등색선무늬와 그래픽의 등색선무늬등은 Fig.6 의 (a)와 (b)에 각각 나타내었다.

(a) Actual isochromatic fringe pattern

(b) Plotted isochromatic fringe pattern

Fig.6. Isochromatic fringe patterns for inclined crack, (B=30°, 2a/W=0.4.)

그래픽 등색선무늬는 Hook-Jeeves 수치해석법이 이용된 광탄성실험 하이브릿법으로 구한 응력성분들을 광응력법칙에 대입하여 구한 등색선무늬이다.

그래픽등색선무늬는 실제의 등색선무늬와 거의 일치하고 "+"은 실험치가 측정된 위치를 나타내고(실험치는 각 무늬의 중심선상에서 측정되었다) 그들은 각 무늬차수의 중심선상에 존재하고 있다. 이러한 결과는 본 연구에서 수치해석법이 개발됝 Hook-Jeeves 이용된 광탄성실험 하이브릿법이 유효함을 알 수 있다. Hook-Jeeves 수치해석법이 이용된 광탄성실험 하이브릿법으로 구한 응력성분들 중에서 2a/w=0.4 인 경우의 응력성분의 등응력선을 Fig.15에 타나내었다.

Fig.7 에서 보듯이 크랙면상에 $\sigma_{y} = \tau_{xy} = 0$ 이다.

이 결과는 크랙면상의 무응력조건을 만족하고 있다. 이결과와 앞의 등색선무늬에 대한 결과는 Hook-Jeeves 수치해석법이 이용된 광탄성실험 하이브릿업이 유효함을 알 수 있고 이방법은 등색선무늬만으로도 응력성분을 분리할 수 있다는 것을 알 수 있다. Fig.8, Fig.9 그리고 Fig.10 등은 크랙경사각도(= β) 가 30°이고 크랙길이변화 (2*a*/2*W*) 가 0.4 인 경우의 오차값, 응력확대계수 *K*₁/*K*₀, *K*₂/*K*₀ 등을 응력함수 항의 수 N 에 대하여 나타낸것이다.

각 그림에서 -◆- 와 -□- 그리고 — 은 각각 Newton-Raphson 수치해석법과 Hook-Jeeves 수치해석법을 이용한 광탄성실험 하이브릿법에서 각각 구한 실험치와 이론치 등을 나타낸것이다. 오차값, K_1/K_0 , K_2/K_0 의 어느 경우에서도 Hook-Jeeves 수치해석법을 이용한 광탄성실험 하이브릿법으로 구한 값은 이론치와 거의 일치하고 응력함수의 항의 수에 대하여서도 거의 일정하다.

그러나 Newton-Raphson 수치해석법을 이용한 광탄성실험 하이브릿법으로 구한 오차, K_1/K_0 그리고 K_2/K_0 등은 이론치와도 차이가 있고, 응력함수의 항의 수에 대하여서 변화됨을 할 수 있다.

Fig.8. Error function for inclined crack with respect to number of terms $N(2a/W=0.4, \beta=30^\circ)$.

Fig.17. Stress intensity factor K_1/K_0 for inclined crack with respect to number of terms N

(2a/W=0.4, β=30°).

Fig.18. Stress intensity factor K_2/K_0 for inclined crack with respect to number of terms N (2a/W=0.4, β =30°).

이러한 결과를 비추어 볼 때 Hook-Jeeves 수치해석법을 이용한 광탄성실험 하이브릿법은 유효하며 응력확대계수를 구하는데 유효하게 이용될 수 있고 등색선무늬만으로서도 응력성분을 분리할 수 있다는 것을 알 수 있다.

5. 결론

본 연구를 통하여 아래와 같은 결론을 내릴 수 있다.

1. Hook-Jeeves 수치해석법이 이용된 광탄성실험 하이브릿법이 체계화 되었고 그 방법이 유효성이 확인되었다. 고응력 분포에도 그 방법이 적용될 수 있다.

2. 응력해석분석에 있어서 Hook-Jeeves 수치해석 법이 이용된 광탄성실험 하이브릿법은 NewtonRaphson 수치해석법이 이용된 광탄성 실험 하이브 릿법보다 더 정확하다.

3. 다른 전 영역실험의 데이터를 처리하는데 Hook-Jeeves 수치해석법이 이용된 광탄성실험 하이 브릿법의 개념이 유효하게 이용될 수 있다.

참고문헌

- (1) D. Brewster, 1816, Phil, Trans. Roy. Soc. Part1, pp. 156.
- (2) M. Hetenyi, 1952, Proc. 1st U.S., Nat. Congr. Appl. Mech, pp. 499.
- (3) R. Hiltscher, 1953, Z. VDI, pp. 95.
- (4) M. M. Frocht, R. A. Thomson, 1958, proc. 3rd U.S. Nat. Congr. Appl. Mech., pp. 533.
- (5) E. Moench, R. Jira. 1955, Z. Angew. Phys. p87.
- (6) M. Nisida, M. Hondo, T. Hasunuma, 1957, Proc. 6th Japan Nat. Congr. Appl. Mech. pp. 137.
- (7) D. Post, 1953, "Photoelastic Stress Analysis for an Edge Crack in a Tensile Field", Experimental Stress Analysis, pp. 99~116.
- (8) Irwin, G.R., 1958, "The Dynamic Stress Distribution Surrounding a Running Crack a Photoelastic Analysis", Proc. SESA, pp. 93~96.
- (9) M. Ramulu, 1982, Dynamic Crack Curving and Branching, Dissertation, University of Washington.
- (10) J.S. Hawong, A.S. Kobayashi, M.S. Dadkhah, B. S.-J. Kang, and M. Ramulu, "Dynamic Crack Curving and Branching under Biaxial Loading", Experimental Mechanics, pp. 146~153.
- (11) Tsuyoshi Hayashi, 1962, "Photoelastic Method of Experimentation for Orthotropic Materials", Applied Physics, Vol. 31, No. 10, pp. 34~35.
- (12) Dally, J.W. and Alfirevich, I., 1969, "Application of Birefringent Coating to Glass-Fiber-Reinforced Plastics", Exp. Mech., pp. 97~102.
- (13) J.W. Dally and R. Prabhakaran, 1971, "Photo-Orthotropic-elasticity", Experimental Mechanics, pp. 346~356.
- (14) Prabhakaran, R., 1975, "On the stress-Optic Law for Orthotropic-Model Materials in Biaxial-Stress Fields", Exp. Mech., pp. 29~34.
- (15) D.G. Smith and C.W. Smith, 1972, "Photoelastic Determination of Mixed Stress Intensity Factors", Engr. Fract. Mech, Vol. 4, pp. 357~366.
- (16) Tada, H., 1974, "Photoelasticity in Fracture Mechaniss", Experimental Mechanics, Vol. 1, pp. 390~396.
- (17). J.M. Etheridge, J.W. Dally, 1978, "A Three Parameter Method for Determining Stress Intensity Factors from Isochomatic Fringe Loops", Journal of Strain Analysis Vol. 13, No. 2.
- (18) Robert J. Sanford, 1797, "A General Method for Determinign Mixed Mode Stress Intensity Factors form Isochromatic Fringe Patterns", Engr. Fracture Mech. pp. 621~633.

- (19) Robert J. Sanford, 1980, "Aplication of the Least Square Method to Photoelastic Analysis", Experimental Mechanics, pp. 192~197.
- (20) Prabhakaram, R., Chermahini, R.G., 1984, "Application of the Least-Square Method to Elastic and Photoelastic Calibration of Orthotrophic Composites" Exp. Mech., pp. 17~21.
- (21) Jai Sug Hawong, Dong Chul Shin, Hyo Jae Lee, "Photoelastic Experimental Hybrid Method for Fracture Mechanics of Anisotropic Materials", Experimental Mechanics, Vol. 16 no. 2, pp. 165~174, 2002.
- (22) J.S. Hawong, C.H. Lin, S.T. Lin, J. Rhee and R.E. Rowlands, "A Hybrid Method to Determine Individual Stress in Orthotropic Composite Using Only Measured Isochromatic Data", Journal Stresses in Orthotropic Composite Material, Vol. 29, No. 18, pp. 8~13, 1991.
- (23) Dong-Chul Shin, Jai-Sug Hawong and O-sung Kwon, 2001, "A Study on the Development of Two Dissimilar Isotropic Bi-Materials", Transactions of KSME(A). Vol. 25, No. 3, pp.434~442.
- (24) Dong-Chul Shin, Jai-Sug Hawong and Tae-Gyu Kim, 2001, "Development of the Dynamic Photoelastic Hybrid Method for Propagating Interfacial Crack of Isotropic/Ormotropic Bi-material", Transactions of KSME(A), Vol. 25, No. 7, pp. 105~1063.
- (25) Jai-Sug Hawong, Dong-Chul Shin, Hyo Jae Lee, 2001, "Photoelastic Experimental Mechanics", Vol. 41, No. 1, pp. 92~99.
- (26) Jae-Guk Suh, Jai-sug Hawong and Dong-Chul Shin, 2003, A Study of Development of the Stress Optic Law of Photoelastic Experiment Considering Residual Stress, KSME International Journal, Vol. 17, No. 11, pp. 1674~1681.
- (27) Jai-Sug Hawong, Dong-Chul Shin and Un-cheol Back, 2004, Validation of Pure Shear Test Device Using Finite Element Method and Experimental Methods, Engineering Fracture Mechanics71, pp. 233~243.
- (28) Samson, Robert C., 1970, "A Stress-Optic Law for Photoelastic Analysis of Orthoropic Composite", Exp. Mech., pp. 210~215.