DOI QR코드

DOI QR Code

Analysis of Flow Velocity Change in Blade Installed Shroud System for Tidal Current Generation

블레이드가 설치된 조류발전용 쉬라우드 시스템 내 유속 변화 분석

  • Lee, Uk Jae (Department of Civil and Environmental Engineering, Wonkwang University) ;
  • Han, Seok Jong (Division of Mechanical and Automotive Engineering, Wonkwang University) ;
  • Jeong, Shin Taek (Department of Civil and Environmental Engineering, Wonkwang University) ;
  • Lee, Sang Ho (Division of Mechanical and Automotive Engineering, Wonkwang University)
  • 이욱재 (원광대학교 토목환경공학과) ;
  • 한석종 (원광대학교 기계자동차 공학부) ;
  • 정신택 (원광대학교 토목환경공학과) ;
  • 이상호 (원광대학교 기계자동차 공학부)
  • Received : 2019.01.28
  • Accepted : 2019.02.21
  • Published : 2019.02.28

Abstract

Flow velocity changes in the shroud system for tidal current power generation due to experimental flow velocities and blade geometry changes were analyzed by hydraulic experiment and numerical simulation. Through the hydraulic experiment, flow velocities at inlet of shroud system and RPM according to blade geometry were measured, and numerical simulation was used to analyze flow velocity changes in shroud. When the experimental flow velocity was increased by about 28% and the shape of the airfoil was applied, the measured flow velocity at the shroud inlet tended to increase by up to about 56%. On the other hand, when airfoil-shaped blades were installed, the flow velocity at the inlet tended to increase by up to 14% compared to conventional blades, and RPM was also the highest at the same conditions. The hydraulic experiment and numerical simulation results showed an error of about 13%, and the trends of the flow velocity changes in each result are similar. Numerical simulation of the flow velocity changes in the shroud showed that the flow velocity tended to increase 1.7 times at the front of the blade compared to the inlet. The results of the flow velocity change analysis in the shroud system obtained from this study will provide the basic data necessary for the development of efficient shroud system for tidal current power generation.

유속의 크기와 블레이드의 기하학적 형상 변화에 따라 발생하는 조류발전용 쉬라우드 시스템 내 유속 변화를 분석하기 위하여 수리모형실험과 수치해석적 방법을 이용하였다. 모형실험을 통해 시스템의 유입부에서 유속 변화와 블레이드 형상변화에 따른 고유 회전수를 계측하였으며, 수치해석을 통해 쉬라우드내 유속 변화를 분석하였다. 실험 유속이 약 28% 증가하고, 익형의 형상을 적용하였을 때, 쉬라우드 유입부에서 계측된 유속은 최대 약 56% 증가하는 경향을 보였다. 한편, 익형 형상을 적용한 블레이드가 설치된 경우 유입부에서의 유속은 일반 블레이드에 비해 최대 14% 증가하는 경향을 보였으며, 회전수 역시 동일 조건에서 가장 높은 수치를 보였다. 수리실험과 수치해석 결과는 약 13%의 오차를 보였으며, 각각의 결과에서 보이는 유속 변화에 대한 경향은 유사하다. 쉬라우드 내 유속 변화를 수치해석으로 분석한 결과 유입부 대비 블레이드 앞부분에서 유속은 최대 1.7배 증가하는 경향을 보였다. 본 연구를 통해 얻은 시스템 내 유속 변화 분석 결과는 효율적인 조류발전용 쉬라우드 시스템 개발에 필요한 기초 자료를 제시할 수 있을 것으로 판단된다.

Keywords

References

  1. Alidadi, M. and Calisal, S. (2014). A numerical method for calculation of power output from ducted vertical axis hydro-current turbines. Computers & Fluids, 105, 76-81. https://doi.org/10.1016/j.compfluid.2014.09.009
  2. Azim, A., Shahrani, A., Ahmmad, S. and Rosdi, H. (2014). CFD Study of Tidal Current Turbine Shroud for Initial Design Evaluation. Applied Mechanics and Materials, 679, 35-38. https://doi.org/10.4028/www.scientific.net/AMM.679.35
  3. Choi, H.J., Oh, Y.C., Kim, B.S., Seo, K.C. and Lee, Y.H. (2018). 1MW class tidal-current turbine blade shape design and powerperformance prediction in various TSR conditions. The Korean Society of Marine Engineering, 42(4), 298-303 (in Korean). https://doi.org/10.5916/jkosme.2018.42.4.298
  4. Fleming, C.F. and Willden, R.H. (2016). Analysis of bi-directional ducted tidal turbine performance. International Journal of Marine Energy, 16, 162-173. https://doi.org/10.1016/j.ijome.2016.07.003
  5. FLUENT User's Guide, FLUENT Inc.
  6. Grant, C., Nick, O. and Dominic, G. (2016). Numerical Modelling of a Three-Bladed NREL S814 Tidal Turbine. AWTEC, Singapore, 2016.
  7. Jo, C.H., Park, H.J., Cho, B.K. and Kim, M.J. (2017). Investigation of Motion of Single Point Moored Duct-type TCP System by Both Numerical and Experimental Method. Korean Hydrogen and New Energy Society, 28, 212-219 (in Korean).
  8. Lee, J.S., Jung, J.H. and Kim, B.S. (2018). Study on Shape Design and Power Performance Analysis of Small Horizontal Axis Tidal Turbine with Duct Using BEM and CFD Methods. The Korean Society of Mechanical Engineers, 42(3), 197-205 (in Korean). https://doi.org/10.3795/KSME-B.2018.42.3.197
  9. Lee, U.J., Lee, S.H., Han, S.J., Jeong, S.T., Choi, H.J. and Ko, D.H. (2018). Numerical Analysis for the Optimum Design of Shroud Tidal Stream Generation System. Journal of Korean Society of Coastal and Ocean Engineers, 30(3), 134-141 (in Korean). https://doi.org/10.9765/KSCOE.2018.30.3.134
  10. Ministry of Trade, Industry and Energy (2017). Implementation plan for renewable energy 3020 (plan) (in Korean).
  11. Shahsavarifard, M., Bibeau, E.L. and Chatoorgoon, V. (2015). Effect of shroud on the performance of horizontal axis hydrokinetic turbines. Ocean Engineering, 96, 215-225. https://doi.org/10.1016/j.oceaneng.2014.12.006
  12. Ponta, F.L. and Jacovkis, P.M. (2008). Marine-current power generation by diffuser-augmented floating hydro-turbines. Renewable Energy, 33, 665-673. https://doi.org/10.1016/j.renene.2007.04.008
  13. R&D information center (2018). Smart shipbuilding and shipping 4.0 Actual situation analysis and ocean energy/marine resources R & D strategy, Knowledge industry information institute (in Korean).