• Title/Summary/Keyword: Numerical Integration Time Step

Search Result 83, Processing Time 0.025 seconds

Computation of Turbulent Flow around Wigley Hull Using 4-Stage Runge-Kutta Scheme on Nonstaggered Grid (정규격자계와 4단계 Range-Kutta법을 사용한 Wigley선형 주위의 난류유동계산)

  • Suak-Hp Van;Hyoung-Tae Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.3
    • /
    • pp.87-99
    • /
    • 1994
  • Reynolds Averaged Navier-Stokes equations are solved numerically for the computation of turbulent flow around a Wigley double model. A second order finite difference method is applied for the spatial discretization on the nonstaggered grid system and 4-stage Runge-Kutta scheme for the numerical integration in time. In order to increase the time step, residual averaging scheme of Jameson is adopted. Pressure field is obtained by solving the pressure-Poisson equation with the appropriate Neumann boundary condition. For the turbulence closure, 0-equation turbulence model of Baldwin-Lomax is used. Numerical computation is carried out for the Reynolds number of 4.5 million. Comparisons of the computed results with the available experimental data show good agreements for the velocity and pressure distributions.

  • PDF

Numerical Requirements for the Simulation of Detonation Cell Structures (데토네이션 셀 구조 모사를 위한 수치적 요구 조건)

  • Choi Jeong-Yeol;Cho Deok-Rae
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.2
    • /
    • pp.1-14
    • /
    • 2006
  • Present study examines the numerical issues of cell structure simulation for various regimes of detonation phenomena ranging from weakly unstable to highly unstable detonations. Inviscid fluid dynamics equations with $variable-{\gamma} $ formulation and one-step Arrhenius reaction model are solved by a MUSCL-type TVD scheme and 4th order accurate Runge-Kutta time integration scheme. A series of numerical studies are carried out for the different regimes of the detonation phenomena to investigate the computational requirements for the simulation of the detonation wave cell structure by varying the reaction constants and grid resolutions. The computational results are investigated by comparing the solution of steady ZND structure to draw out the minimum grid resolutions and the size of the computational domain for the capturing cell structures of the different regimes of the detonation phenomena.

DEVELOPMENT OF AN UNSTRUCTURED HYBRID MESH FLOW SOLVER FOR 3-D STEADY/UNSTEADY INCOMPRESSIBLE FLOW SIMULATIONS (삼차원 정상/비정상 비압축성 유동해석을 위한 비정렬 혼합격자계 기반의 유동해석 코드 개발)

  • Jung, Mun-Seung;Kwon, Oh-Joon
    • Journal of computational fluids engineering
    • /
    • v.13 no.2
    • /
    • pp.27-41
    • /
    • 2008
  • An unstructured hybrid mesh flow solver has been developed for the simulation of three-dimensional steady and unsteady incompressible flow fields. The incompressible Navier-Stokes equations with an artificial compressibility method were discretized by using a node-based finite-volume method. For the unsteady time-accurate computation, a dual-time stepping method was adopted to satisfy a divergence-free flow field at each physical time step. An implicit time integration method with local time stepping was implemented to accelerate the convergence in the pseudo-time sub-iteration procedure. The one-equation Spalart-Allmaras turbulence model has been adopted to solve high-Reynolds number flow fields. The flow solver was parallelized to minimize the CPU time and to overcome the computational overhead. This method has been applied to calculate steady and unsteady flow fields around submarine configurations and a 3-D infinite cylinder. Validations were made by comparing the predicted results with those of experiments or other numerical results. It was demonstrated that the present method is efficient and robust for the prediction of steady and unsteady incompressible flow fields.

Multi-Point Contact Analysis of Two Bodies in Plane (평면에서의 임의 형상을 갖는 물체의 다점 접촉 해석)

  • Jeon, Gyeong-Jin;Park, Su-Jin;Son, Jeong-Hyeon;Yu, Wan-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1631-1637
    • /
    • 2002
  • This paper presents a method for calculating contact force between bodies on plane. At each integration time step, the proposed method finds expected contact point on their outlines and then calculates penetration, velocity of penetration and contact force. This paper adopts continuous analysis method and multi-point contact method to calculate contact force. To obtain the accurate expected contact point on their outlines, a new algorithm is developed. The accuracy of the proposed algorithm is demonstrated by comparing the numerical results of the proposed method and DADS.

Nonlinear Finite Element Analysis of Composite Shell Under Impact

  • Cho, Chong-Du;Zhao, Gui-Ping;Kim, Chang-Boo
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.666-674
    • /
    • 2000
  • Large deflection dynamic responses of laminated composite cylindrical shells under impact are analyzed by the geometrically nonlinear finite element method based on a generalized Sander's shell theory with the first order transverse shear deformation and the von-Karman large deflection assumption. A modified indentation law with inelastic indentation is employed for the contact force. The nonlinear finite element equations of motion of shell and an impactor along with the contact laws are solved numerically using Newmark's time marching integration scheme in conjunction with Akay type successive iteration in each step. The ply failure region of the laminated shell is estimated using the Tsai- Wu quadratic interaction criteria. Numerical results, including the contact force histories, deflections and strains are presented and compared with the ones by linear analysis. The effect of the radius of curvature on the composite shell behaviors is investigated and discussed.

  • PDF

Inelastic transient analysis of piles in nonhomogeneous soil

  • Kucukarslan, S.;Banerjee, P.K.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.5
    • /
    • pp.545-556
    • /
    • 2007
  • In this paper, a hybrid boundary element technique is implemented to analyze nonlinear transient pile soil interaction in Gibson type nonhomeogenous soil. Inelastic modeling of soil media is presented by introducing a rational approximation to the continuum with nonlinear interface springs along the piles. Modified $\ddot{O}$zdemir's nonlinear model is implemented and systems of equations are coupled at interfaces for piles and pile groups. Linear beam column finite elements are used to model the piles and the resulting governing equations are solved using an implicit integration scheme. By enforcing displacement equilibrium conditions at each time step, a system of equations is generated which yields the solution. A numerical example is performed to investigate the effects of nonlinearity on the pile soil interaction.

NUMERICAL STUDY OF THREE-DIMENSIONAL DETONATION WAVES USING PARALLEL PROCESSING (병렬 처리를 이용한 3차원 테토네이션 파 수치해석)

  • Cho, D.R.;Choi, J.Y.
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.15-19
    • /
    • 2005
  • Three-dimensional structures of unsteady detonation wave propagating through a square-shaped tube is studied using computational method and parallel processing. Inviscid fluid dynamics equations coupled with variable-${\gamma}$ formulation and simplified one-step Arrhenius chemical reaction model were analysed by a MUSCL-type TVD scheme and four stage Runge-Kutta time integration. Results in three dimension show the two unsteady detonation wave propagating mode, the Rectangular and diagonal mode of detonation wave instabilities. Two different modes of instability showed the same cell length but different cell width and the geometric similarities in smoked-foil record.

  • PDF

Lock-in and drag amplification effects in slender line-like structures through CFD

  • Belver, Ali Vasallo;Iban, Antolin Lorenzana;Rossi, Riccardo
    • Wind and Structures
    • /
    • v.15 no.3
    • /
    • pp.189-208
    • /
    • 2012
  • Lock-in and drag amplification phenomena are studied for a flexible cantilever using a simplified fluid-structure interaction approach. Instead of solving the 3D domain, a simplified setup is devised, in which 2D flow problems are solved on a number of planes parallel to the wind direction and transversal to the structure. On such planes, the incompressible Navier-Stokes equations are solved to estimate the fluid action at different positions of the line-like structure. The fluid flow on each plane is coupled with the structural deformation at the corresponding position, affecting the dynamic behaviour of the system. An Arbitrary Lagrangian-Eulerian (ALE) approach is used to take in account the deformation of the domain, and a fractional-step scheme is used to solve the fluid field. The stabilization of incompressibility and convection is achieved through orthogonal quasi-static subscales, an approach that is believed to provide a first step towards turbulence modelling. In order to model the structural problem, a special one-dimensional element for thin walled cross-section beam is implemented. The standard second-order Bossak method is used for the time integration of the structural problem.

A STUDY ON IMPLICIT METHOD FOR SOLVING INCOMPRESSIBLE FLOW WITH UNSTRUCTURED MESHES (비정렬 격자상에서 비압축성 유동해석을 위한 음해법에 대한 연구)

  • Kim, M.G.;Ahn, H.T.
    • Journal of computational fluids engineering
    • /
    • v.19 no.1
    • /
    • pp.27-33
    • /
    • 2014
  • A new and efficient implicit scheme is proposed to obtain a steady-state solution in time integration and the comparison of characteristics with the approximation ways for the implicit method to solve the incompressible Navier-Stokes equations is provided. The conservative, finite-volume cell-vertex upwind scheme and artificial compressibility method using dual time stepping for time accuracy is applied in this paper. The numerical results obtained indicate that the direct application of Jacobian matrix to the Lower and upper sweeps of implicit LU-SGS leads to better performance as well as convergence regardless of CFL number and true time step than explicit scheme and approximation of Jacobian matrix. The flow simulation around box in uniform flow with unstructured meshes is demonstrated to check the validity of the current formulation.

Proper Orthogonal Decomposition Based Intrusive Reduced Order Models to Accelerate Computational Speed of Dynamic Analyses of Structures Using Explicit Time Integration Methods (외연적 시간적분법 활용 동적 구조해석 속도 향상을 위한 적합직교분해 기반 침습적 차수축소모델 적용 연구)

  • Young Kwang Hwang;Myungil Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.1
    • /
    • pp.9-16
    • /
    • 2024
  • Using the proper orthogonal decomposition (POD) based intrusive reduced order model (ROM), the total degrees of freedom of the structural system can be significantly reduced and the critical time step satisfying the conditional stability increases in the explicit time integrations. In this study, therefore, the changes in the critical time step in the explicit time integrations are investigated using both the POD-ROM and Voronoi-cell lattice model (VCLM). The snapshot matrix is composed of the data from the structural response under the arbitrary dynamic loads such as seismic excitation, from which the POD-ROM is constructed and the predictive capability is validated. The simulated results show that the significant reduction in the computational time can be achieved using the POD-ROM with sufficiently ensuring the numerical accuracy in the seismic analyses. In addition, the validations show that the POD based intrusive ROM is compatible with the Voronoi-cell lattice based explicit dynamic analyses. In the future study, the research results will be utilized as an elemental technology for the developments of the real-time predictive models or monitoring system involving the high-fidelity simulations of structural dynamics.