DOI QR코드

DOI QR Code

Proper Orthogonal Decomposition Based Intrusive Reduced Order Models to Accelerate Computational Speed of Dynamic Analyses of Structures Using Explicit Time Integration Methods

외연적 시간적분법 활용 동적 구조해석 속도 향상을 위한 적합직교분해 기반 침습적 차수축소모델 적용 연구

  • Young Kwang Hwang (Intelligent Simulation Center, Korea Institute of Science and Technology Information) ;
  • Myungil Kim (Intelligent Simulation Center, Korea Institute of Science and Technology Information)
  • 황영광 (한국과학기술정보연구원 지능형시뮬레이션센터) ;
  • 김명일 (한국과학기술정보연구원 지능형시뮬레이션센터 )
  • Received : 2023.10.05
  • Accepted : 2023.11.20
  • Published : 2024.02.29

Abstract

Using the proper orthogonal decomposition (POD) based intrusive reduced order model (ROM), the total degrees of freedom of the structural system can be significantly reduced and the critical time step satisfying the conditional stability increases in the explicit time integrations. In this study, therefore, the changes in the critical time step in the explicit time integrations are investigated using both the POD-ROM and Voronoi-cell lattice model (VCLM). The snapshot matrix is composed of the data from the structural response under the arbitrary dynamic loads such as seismic excitation, from which the POD-ROM is constructed and the predictive capability is validated. The simulated results show that the significant reduction in the computational time can be achieved using the POD-ROM with sufficiently ensuring the numerical accuracy in the seismic analyses. In addition, the validations show that the POD based intrusive ROM is compatible with the Voronoi-cell lattice based explicit dynamic analyses. In the future study, the research results will be utilized as an elemental technology for the developments of the real-time predictive models or monitoring system involving the high-fidelity simulations of structural dynamics.

일반적으로 적합직교분해(proper orthogonal decomposition, POD) 기반의 침습적(intrusive) 차수축소모델(reduced order model, ROM)을 활용하면 구조 시스템의 전체 자유도를 크게 줄이고 외연적 시간 적분법에서 해의 안정성을 만족하는 임계 시간 간격을 증가시킬 수 있다. 따라서 본 연구에서는 POD-ROM을 활용하여 Voronoi-cell 격자 요소로 이산화된 구조 시스템의 축소와 이에 따른 외연적 시간 적분법의 임계 시간 간격 및 해석 정확도 변화를 살펴보았다. 또한 지진하중과 같은 불규칙한 하중 이력을 받는 구조물 응답 해석에 POD-ROM을 적용하였다. 해석 결과 ROM을 통해 해의 정확도를 충분히 확보하면서 연산 시간을 크게 단축할 수 있음을 확인하였다. 또한 POD-ROM과 VCLM의 연계 방안의 적절성을 확인하였다. 향후 해당 연구는 고정밀 대용량 동적 구조해석의 실용성을 높이고, 설계 변수에 따른 구조물 동적 거동의 실시간 예측을 위한 기반 연구로 활용될 수 있다.

Keywords

Acknowledgement

본 연구는 한국과학기술정보연구원(KISTI)의 기본사업인 2023년 '산업 및 공공분야 문제 해결을 위한 초고성능컴퓨팅 활용 기술 개발(K-23-L02-C05-S01)' 과제의 지원을 받아 수행되었습니다.

References

  1. Belytschko, T., Liu, W.K., Moran, B., Elkhodary, K. (2013) Nonlinear Finite Elements for Continua and Structures, John Wiley & sons, p.823.
  2. Brigham, E.O. (1988) The Fast Fourier Transform, Prentice-Hall, Inc., p.448.
  3. Choo, B., Hw ang, Y.K., Bolander, J.E., Lim, Y.M. (2023) Rigid-Body-Spring Network Model for Failure Simulation of Reinforced-Concrete Members Under Various Loading Rates, Int. J. Numer. & Anal. Methods Geomech., 47, pp.2213~2230. https://doi.org/10.1002/nag.3578
  4. Chopra, A.K. (2011) Dynamics of Structures: Theory and Applications to Earthquake Engineering, Prentice Hall.
  5. Cocchetti, G., Pagani, M., Perego, U. (2013) Selective Mass Scaling and Critical Time-Step Estimate for Explicit Dynamic Analyses with Solid-Shell Elements, Comput. & Struct., 127, pp.39~52. https://doi.org/10.1016/j.compstruc.2012.10.021
  6. Fuller, A., Fan, Z., Day, C., Barlow, C. (2020) Digital Twin: Enabling Technologies, Challenges and Open Research, IEEE Access, 8, pp.108952~108971. https://doi.org/10.1109/ACCESS.2020.2998358
  7. Gomez-Gesteira, M., Rogers, B.D., Crespo, A.J.C., Dalrymple, R.A., Narayanaswamy, M., Dominguez, J.M. (2012) SPHysics - Development of a Free-Surface Fluid Solver - Part 1: Theory and Formulations, Comput. & Geosci., 48, pp.289~299. https://doi.org/10.1016/j.cageo.2012.02.029
  8. Han, J.S., Kim, S.H. (2021) Automation of Krylov Subspace Model Order Reduction for Transient Response Analysis with Multiple Loading, J. Comput. Struct. Eng. Inst. Korea, 34(2), pp.101~111. https://doi.org/10.7734/COSEIK.2021.34.2.101
  9. Holder, T., Leimkuhler, B., Reich, S. (2001) Explicit Variable Step-Size and Time-Reversible Integration, Appl. Numer. Math., 39(3-4), pp.367~377. https://doi.org/10.1016/S0168-9274(01)00089-7
  10. Hughes, T. (2012) The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Dover Publications, Mineola.
  11. Hw ang, Y.K., Bolander, J.E., Lim, Y.M. (2016) Simulation of Concrete Tensile Failure Under High Loading Rates Using Three-Dimensional Irregular Lattice Models, Mech. Mater., 101, pp.136~146. https://doi.org/10.1016/j.mechmat.2016.08.002
  12. Hwang, Y.K., Lim, Y.M., Hong, J.-W. (2022) Simulation of Structural Vibrations Using Voronoi-Cell Lattice Models, J. Mech. Sci. & Technol., 36(2), pp.647~654. https://doi.org/10.1007/s12206-022-0112-z
  13. Krysl, P., Lall, S., Marsden, J.E. (2001) Dimensional Model Reduction in Non-Linear Finite Element Dynamics of Solids and Structures, Int. J. Numer. Methods Eng., 51(4), pp.479~504. https://doi.org/10.1002/nme.167
  14. Kwag, S., Eem, S., Jung, K., Jung, J., Choi, I.-K. (2022) A Study on the Effects of Nuclear Power Plant Structure-Component Interaction in Component Seismic Responses, J. Comput. Struct. Eng. Inst. Korea, 35(2), pp.83~91. https://doi.org/10.7734/COSEIK.2022.35.2.83
  15. Lee, J. (2015) Proper Orthogonal Decomposition-Based Parametric Reduced Order Models for Structural Analysis and Design Optimization, Dissertation, Seoul National University.
  16. Meister, F., Passerini, T., Mihalef, V., Tuysuzoglu, A., Maier, A., Mansi, T. (2020) Deep Learning Acceleration of Total Lagrangian Explicit Dynamics for Soft Tissue Mechanics, Comput. Methods Appl. Mech. & Eng., 358, p.112628.
  17. Mira, D., Perez-Sanchez E.J., Borrell, R., Houzeaux, G. (2023) HPC-Enabling Technologies for High-Fidelity Combustion Simulations, Proc. Combust. Inst., 39(4), pp.5091~5125. https://doi.org/10.1016/j.proci.2022.07.222
  18. Olovsson, L., Simonsson, K., Unosson, M. (2005) Selective Mass Scaling for Explicit Finite Element Analyses, Int. J. Numer. Methods Eng., 63(10), pp.1436~1445. https://doi.org/10.1002/nme.1293
  19. Permann, C.J., Gaston, D.R., Andrs, D., Carlsen, R.W., Kong, F., Lindsay, A.D., Miller, J.M., Peterson, J.W., Slaughter, A.E., Stogner, R.H., Martineau, R.C. (2020) MOOSE: Enabling Massively Parallel Multiphysics Simulation, SoftwareX, 11, p.100430.
  20. Roh, H.-S., Youn, J.-M., Lee, H.-S., Lee, J.-S. (2012) Development of a New Lumped-Mass Stick Model using the Eigen-Properties of Structures, J. Earthq. Eng. Soc. Korea, 16(4), pp.19~26. https://doi.org/10.5000/EESK.2012.16.4.019
  21. Taylor, Z.A., Crozier, S., Ourselin, S. (2011) A Reduced Order Explicit Dynamic Finite Element Algorithm for Surgical Simulation, IEEE Trans. Med. Imaging, 30(9), pp.1713~1721. https://doi.org/10.1109/TMI.2011.2143723
  22. Van der Sande, K., Flyer, N., Fornberg, B. (2023) Accelerating Explicit Time-Stepping with Spatially Variable Time Steps Through Machine Learning, J. Sci. Comput., 96(1), pp.1~31. https://doi.org/10.1007/s10915-023-02223-4
  23. Yip, M., Li, Z., Liao, B.-S., Bolander, J.E. (2006) Irregular Lattice Models of Fracture of Multiphase Particulate Materials, Int. J. Fract., 140, pp.113~124. https://doi.org/10.1007/s10704-006-7636-6