• Title/Summary/Keyword: Numerical Formula Model

Search Result 299, Processing Time 0.031 seconds

Characteristics of Wave Trasnformation in Gamcheon Harbor (감천항내의 파랑변형 특성)

  • 김재중;김기철;이정만
    • Journal of Korean Port Research
    • /
    • v.13 no.2
    • /
    • pp.399-408
    • /
    • 1999
  • Copeland’s(1985) hyperbolic mild-slope equation including diffraction refraction and reflection in the wave field is used as a governing equation in this study. The result of Maruyama & Kajima(1985) is used to calculate wave direction and that of Watanabe & Maruyama(1986) is used as a energy dissipation formula. Numerical solutions are obtained by the Leap-Frog scheme and compared with Watanabe & Maruyama’s (1984) hydraulic experimental results and numerical simulation results for the detached breakwater. This wave model is applied to a detached breakwater and compared with Watanabe and Maruyama’s (1984) hydraulic model results to check the characteristics of reflected wave field around a detached breakwater. The distribution of wave height and we phase in front of a detached breakwater is more accurate than the Watanabe and Maruyama’s numerical results. The results from our wave model show good agreements with the others and also show nonlinear effects around the detached breakwater. This model is applied to the Gamcheon harbor of pusan. the field observations were carried out at Pusan harbor wave station in 1986-1995 and the results were accepted as a design wave condition in this study. The wave height and wave period was measured by Dong-A university at one station in the Gamcheon harbor in 1996-1997 and used as a calibration criterion. The measured data were used as input data for the numerical simulation and also compared with simulated results. The numerical simulation shows a fairly good results which considering the effect of topographic characteristics and effect of narrow entrance due to two separated breakwaters in Gamcheon harbor. The wave distribution characteristics inside Gamcheon harbor is quite different with the offshore wave direction and wave period.

  • PDF

Stability analysis of an uncooled segment of superconductor

  • Seol, S.Y.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.3
    • /
    • pp.8-12
    • /
    • 2017
  • If the part of the HTS magnet is exposed to the outside of the cryogenic coolant due to the fluctuation of the height of the cooling liquid or the vapor generation, the uncooled part becomes very unstable. In this paper, the unstable equilibrium temperature distribution of the uncooled part of a superconductor is obtained, and the maximum temperature and energy are calculated as a function of the uncooled length. Similar to the superconductor stability problem, the current sharing model was applied to derive the theoretical formula and calculated by numerical integration. We also applied a jump model, which assumes that joule heat is generated in all of the uncooled segment, and compares it with the current sharing model results. As a result of the analysis, the stable equilibrium state and the critical uncooled length in the jump model are not shown in the current sharing model. The stability of the conductors to external disturbances was discussed based on the obtained temperature distribution, maximum temperature, and energy.

An investigation on the effect of the wall treatments in RANS simulations of model and full-scale marine propeller flows

  • Choi, Jung-Kyu;Kim, Hyoung-Tae
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.967-987
    • /
    • 2020
  • A numerical analysis is carried out for the marine propellers in open water conditions to investigate the effect of the wall treatments in model and full scale. The standard wall function to apply the low of the wall and the two layer zonal model to calculate the whole boundary layer for a transition phenomenon are used with one turbulence model. To determine an appropriate distance of the first grid point from the wall when using the wall function, a formula based on Reynolds number is suggested, which can estimate the maximum y+ satisfying the logarithmic law. In the model scale, it is confirmed that a transition calculation is required for a model scale propeller with low Reynolds number that the transient region appears widely. While in the full scale, the wall function calculation is recommended for efficient calculations due to the turbulence dominant flow for large Reynolds number.

Mechanical behavior of outer square inner circular concrete-filled dual steel tubular stub columns

  • Ding, Fa-xing;Wang, Wenjun;Liu, Xue-mei;Wang, Liping;Sun, Yi
    • Steel and Composite Structures
    • /
    • v.38 no.3
    • /
    • pp.305-317
    • /
    • 2021
  • The mechanical behavior of the outer square inner circular concrete-filled dual steel tubular (SCCFT) stub columns under axial compression is investigated by means of experimental research, numerical analysis and theoretical investigation. Parameters such as diameter ratio, concrete strength and steel ratio were discussed to identify their influence on the mechanical properties of SCCFT short columns on the basis of the experimental investigation of seven SCCFT short columns. By establishing a finite element model, nonlinear analysis was performed to discuss the longitudinal and transverse stress of the dual steel tubes. The longitudinal stress characteristics of the core and sandwich concrete were also analyzed. Furthermore, the failure sequence was illustrated and the reasonable cross-section composition of SCCFT stub column was proposed. A formula to predict the axial load capacity of SCCFT stub column was advanced and verified by the results from experiment and the finite element.

Numerical simulation of fish nets in currents using a Morison force model

  • Cifuentes, Cristian;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • v.7 no.2
    • /
    • pp.143-155
    • /
    • 2017
  • For complex flexible structures such as nets, the determination of drag forces and its deformation is a challenging task. The accurate prediction of loads on cages is one of the key steps in designing fish farm facilities. The basic physics with a simple cage, can be addressed by the use of experimental studies. However, to design more complex cage system for various environmental conditions, a reliable numerical simulation tool is essential. In this work, the current load on a cage is calculated using a Morison-force model applied at instantaneous positions of equivalent-net modeling. Variations of solidity ratio ($S_n$) of the net and current speed are considered. An equivalent array of cylinders is built to represent the physical netting. Based on the systematic comparisons between the published experimental data for Raschel nets and the current numerical simulations, carried out using the commercial software OrcaFlex, a new formulation for $C_d$ values, used in the equivalent-net model, is presented. The similar approach can also be applied to other netting materials following the same procedure. In case of high solidity ratio and current speed, the hybrid model defines $C_d$ as a function of Re (Reynolds number) and $S_n$ to better represent the corresponding weak diffraction effects. Otherwise, the conventional $C_d$ values depending only on Re can be used with including shielding effects for downstream elements. This new methodology significantly improves the agreement between numerical and experimental data.

ON THE PROBABILITY OF RUIN IN A CONTINUOUS RISK MODEL WITH DELAYED CLAIMS

  • Zou, Wei;Xie, Jie-Hua
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.1
    • /
    • pp.111-125
    • /
    • 2013
  • In this paper, we consider a continuous time risk model involving two types of dependent claims, namely main claims and by-claims. The by-claim is induced by the main claim and the occurrence of by-claim may be delayed depending on associated main claim amount. Using Rouch$\acute{e}$'s theorem, we first derive the closed-form solution for the Laplace transform of the survival probability in the dependent risk model from an integro-differential equations system. Then, using the Laplace transform, we derive a defective renewal equation satisfied by the survival probability. For the exponential claim sizes, we present the explicit formula for the survival probability. We also illustrate the influence of the model parameters in the dependent risk model on the survival probability by numerical examples.

Sea Level Response in the Korea Strait to Typhoons

  • Hong, Chul-Hoon
    • Journal of the korean society of oceanography
    • /
    • v.31 no.3
    • /
    • pp.107-116
    • /
    • 1996
  • A shallow water numerical model is established to investigate the response of coastal water in the Korea Strait to typhoons that pass nearby the Korea Strait. Atmospheric pressure and wind by Fujita's formula (1952) and Miyazaki et al. (1961), respectively are used in the model. The model results show an agreement fair with the observation partially, but poor with the amplitude of the sea level variation. In particular, the discrepancy is larger in a typhoon passing through right side than that through left side of the Korea Strait. The model showes that the disagreement between the model and the observation can be caused by numerically unrealistic distributions of armospheric pressure and wind around the strait. In the Korea Strait the isostatic effects in the model were underestimated, whereas the wind fields were overestimated.

  • PDF

A study of tunnel concrete lining design using the ground-lining interaction model with the interface element (계면요소를 이용한 지반-라이닝 상호작용 모델에 의한 터널 콘크리트 라이닝 연구)

  • Huh, Do-hak;Moon, Hyun-Koo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.6
    • /
    • pp.575-586
    • /
    • 2015
  • In NATM tunnel, the Ground-Lining Interaction model(GLI model) had been proposed a one of the numerical analysis as the ground load estimation method of the concrete lining. But this model was not applied with the interface mechanism between the ground and the support member or concrete lining. Therefor in this study, it is implemented as a model for closer than actual states that the interface element applied to the existing GLI model. And the modified GLI formula is proposed with the ground load estimation that is from the numerical results for each ground and rock cover conditions. Based on the numerical results, the ground load acting on concrete lining is reduced to ave. 88~106% in case of IV ground condition and ave. 47~57% in case of weathered soil condition comparing with the existing GLI model. It can be anticipated that the results obtained from this study can be applied to an estimation of the ground load on the concrete lining modeled like as real states, consistent and economical design.

Simulation of River Bed Change using GSTARS model (GSTARS 모형을 이용한 하상변동 모의)

  • Ahn, Sang-Jin;Yoon, Seok-Hwan;Yeon, In-Sung;Kwark, Hyun-Gu
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.297-300
    • /
    • 2002
  • Semi-two dimension numerical models were applied to study on the hydraulic and sedimentologic characteristics of upstream and downstream channel section in Dal stream. The feature of this paper is (1) to analyse the effects of bed changes by sediment transport formulas, (2) to analyse the effects of bed changes by stream tube. The simulation results of Meyer-peter and Muller formula for long-term bed changes are good when compared to the measured data.

  • PDF

Property analysis of electromagnetic fields radiated by electrostatic discharge (정전기 방전에 의한 전자계 복사의 특성 해석)

  • ;Osamu Fujiwara
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.12
    • /
    • pp.1-7
    • /
    • 1997
  • Serious troubles may occur in electromagnetic equipments due to electrostatic discharge (ESD). The number of the damaging incidents are significantly increasing with the increased use of integrated semiconductor elements with loer operation pwoer. In order to examine the phenomena theoretically, this paper anlyzes properties of the transient electromagnetic fields rdiated by ESD. A new model is presented using the Rompe-weizel formula for the spark resistance. The numerical results of ESD fields are compared with the experimental data that were given by wilson-Ma.

  • PDF