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ON THE PROBABILITY OF RUIN IN A CONTINUOUS RISK

MODEL WITH DELAYED CLAIMS

Wei Zou and Jie-Hua Xie

Abstract. In this paper, we consider a continuous time risk model in-
volving two types of dependent claims, namely main claims and by-claims.
The by-claim is induced by the main claim and the occurrence of by-
claim may be delayed depending on associated main claim amount. Using
Rouché’s theorem, we first derive the closed-form solution for the Laplace
transform of the survival probability in the dependent risk model from an
integro-differential equations system. Then, using the Laplace transform,
we derive a defective renewal equation satisfied by the survival proba-

bility. For the exponential claim sizes, we present the explicit formula
for the survival probability. We also illustrate the influence of the model
parameters in the dependent risk model on the survival probability by
numerical examples.

1. Introduction

The classical Cramer-Lundberg model describing the surplus process of an
insurance portfolio relies on the assumption of independence among claim sizes
and between claim sizes and claim inter-occurrence times. However, in prac-
tice this assumption is often too restrictive and there is a need for more general
models where the independence assumptions can be relaxed. Recently, var-
ious results have been obtained concerning the asymptotic behaviour of the
probability of ruin for dependent claims. In the case of light-tailed claim sizes,
Albrecher and Boxma [1] considered the case in which the distribution of a
claim interval is controlled by the previous claim size through a mechanism
that if the claim size exceeds a random level the next claim interval will follow
one type of distribution, if not, it will follow another type of distribution. Their
model depicts a common sense that when a certain kind of catastrophe is big
enough, people will pay more attention to it and so the time until the next
occurrence is longer, and vice versa. Albrecher and Teugels [2] and Boudreault
et al. [4] considered a particular dependence structure among the inter-claim
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time and subsequent claim size. Furthermore, Zhang and Yang [15, 16] have
studied the risk models with dependence between inter-claim times and claim
sizes.

In fact, insurance claims may be delayed due to various reasons. This phe-
nomenon may happen in reality. For a catastrophe such as an earthquake or a
rain-storm, it is very likely that there exist other insurance claims after the im-
mediate ones. Since the work by Waters and Paratriandafylou [8], risk models
with this special feature have been discussed by many authors in the litera-
ture. For example, Boogaert and Haezendonck [3] studied the mathematical
properties of a liability process with settling delay within the framework of
an economics environment. Yuen and Guo [13] studied a compound binomial
model with delayed claims and obtained recursive formulas for the finite time
survival probabilities. Xiao and Guo [9] also studied this risk model. They
derived an upper bound for the ruin probability. Xie and Zou [10] studied an
extension to the risk model proposed in Yuen and Guo [13]. Yuen, Guo and
Ng [14] studied a risk model with delayed claims, in which the time of delay for
the occurrence of a by-claim is assumed to be exponentially distributed. Macci
[7] presented a sample path large deviation principle for the delayed claims
risk model presented in Yuen, Guo and Ng [14]. Xie and Zou [11] first consid-
ered the risk model with delayed claims and a constant dividend barrier in a
financial market driven by a time-homogeneous Markov chain. The expected
discounted dividend payments prior to ruin were derived. Xie and Zou [12]
considered the compound Poisson risk model with delayed claims and proved
that the ruin probability for this risk model decreases as the probability of the
delay of by-claims is increasing.

Note that, all risk models described in the paragraph above relied on the
assumption that the probability of delay of each claim is constant and inde-
pendent of claim amounts. However, there exist many real-world situations for
which such an assumption is inappropriate. For instance, for a line of business
covering damages due to motor accidents, there are different kinds of claim
in a serious motor accident, such as car damage and injury. It is very likely
that the bigger the claim amount for car damage become, the greater odds of
the claim for injury would be delayed. Hence, it is an interesting problem to
consider the risk model with delayed claims, in which the probability of delay
of claims depends on previous claim size.

Motivated by this idea and by the dependent risk model developed in Al-
brecher and Boxma [1], in this paper, we consider a continuous time risk model
with two types of individual claims and the two types of claim have different
distributions of severity. In this risk model, there will be a claim, namely main
claim, at every jump time of the number process. Each main claim induces an-
other type of claim called by-claim. Moreover, the occurrence of the by-claim
may be delayed depending on associated main claim amount. If the main claim
amount is less than a threshold variable, the main claim and its associated by-
claim occur simultaneously; if the main claim amount is larger than or equal
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to a threshold variable, the occurrence of the by-claim will be delayed. We
also assume that the occurrence of the delayed by-claim is independent of the
occurrence of next main claim.

The risk model proposed in this paper is a generalization of compound Pois-
son risk model with delayed claims. We show that, the explicit expression for
the survival probability in this risk model can be obtained. The work of this
paper can also be seen as a complement to the work of Xie and Zou [12] and
extend their results by taking the relevancy between the delay of by-claims and
the main claim amounts into account.

It is obvious that the incorporation of the randomness of delay of the claim
makes the problem more interesting. It also complicates the analysis of the
model. Our aim is to give an exact representation for the survival probabil-
ity in the delayed claims risk model. The paper is structured as follows: we
describe the risk model in detail and define the surplus process of this model
in Section 2. In Section 3, we derive an integro-differential equations system
for survival probabilities. Both of the survival probabilities with zero initial
surplus and the Laplace transforms of the survival probabilities are obtained
in Section 4. Then the defective renewal equation for the survival probability
is obtained and exact representation for the solution of this equation is derived
through an associated compound geometric distribution in Section 5. The ex-
plicit formulas for survival probabilities are obtained when the claim amounts
from both classes are exponentially distributed in Section 6. In Section 6,
we also illustrate the influence of the model parameters in the dependent risk
model on the survival probability by numerical examples.

2. The model

Here, we consider a continuous time model which involves two types of in-
surance claims, namely the main claims and the by-claims. Let the aggregate
main claims process be a compound Poisson process and let {N(t); t ≥ 0} be
the corresponding Poisson claim number process, with intensity λ. Its jump
times are denoted by {Ti}i≥1 with T0 = 0. The main claim amounts {Yi}i≥1 are
assumed to be independent and identically distributed (i.i.d.) positive random
variables with common distribution F . Let {Xi}i≥1 be the by-claim amounts,
assumed to be i.i.d. positive random variables with common distribution G.
The main claim amounts and by-claim amounts are independent and their
means are denoted by µF and µG.

In this risk model, we assume the claim occurrence process to be of the
following type: there will be a main claim Yi at every epoch Ti of the Poisson
process and the main claim Yi will induce a by-claim Xi. Moreover, if the main
claim amount Yi is less than a threshold Bi, the by-claim Xi and its associated
main claim Yi occur simultaneously; if the main claim amount Yi is larger than
or equal to the threshold Bi, the occurrence of the by-claim Xi is delayed to
Ti+1. If the occurrence of the by-claim Xi is delayed to Ti+1, then the delayed
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by-claimXi and main claim Yi+1 occur simultaneously. The quantities {Bi}i≥1

are assumed to be i.i.d. random variables with common distribution B.
In this setup, the surplus process U(t) of this risk model is defined as

(2.1) U(t) = u+ ct−

N(t)
∑

i=1

Yi −R(t),

where u is the initial capital, c is the constant rate per unit time at which the
premiums are received, and R(t) is the sum of all by-claims Xi that occurred
before time t.

One of the key quantities in the risk model is the survival probability, or
non-ruin probability, denoted by Φ(u) as a function of u ≥ 0, which is the
probability that the surplus of the insurer is always above zero, namely,

Φ(u) = Pr(U(t) ≥ 0; for all t ≥ 0).

The corresponding ruin probability is then Ψ(u) = 1 − Φ(u), which is the
probability that the surplus of the insurer is below zero at some time. The
survival probability (ruin probability) can be used to provide an early warning
system for the guidance of an insurance project.

The expectation of the aggregate claims at time t is given by

E





N(t)
∑

i=1

Yi +R(t)



 = λtµF + λtµG − Pr(Y1 ≥ B1)µG

(

1− e−λt
)

.

Thus in order to ensure that premium rate exceeds the net claim rate and
guarantee that ruin does not occur almost surely, we assume the following
positive safely loading condition holds, i.e.,

(2.2) λ(µF + µG) < c.

With other things being the same, we consider a slight change in the risk
model. Instead of having one main claim Y1 and a by-claimX1 with probability
Pr(Y1 < B1) at the first epoch T1, another by-claim X is added at the first
epoch T1, i.e., by-claim X and main claim Y1 occur at T1 simultaneously.
Hence, the corresponding surplus process U1(t) of this auxiliary risk model is
defined as

(2.3) U1(t) = u+ ct−

N(t)
∑

i=1

Yi −R(t)−X,

where X denotes the another by-claim amount, U1(0) = u. Assume that X
and {Xi}i≥1 are i.i.d. positive random variables.

This surplus process is similar to (2.1) except for the subtraction of the by-
claim random variable X . Denote the corresponding survival probability for
this auxiliary model by Φ1(u) which is very useful in the derivation of Φ(u).
From the definitions of (2.1) and (2.3), it is easy to see that Φ(u) ≥ Φ1(u).
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3. System of integro-differential equations

We are interested in the survival probability Φ(u). Consider what will hap-
pen at the first epoch T1. Obviously there will be a main claim Y1. The main
claim will induce a by-claim X1. If Y1 < B1, the by-claim X1 also occurs
at the first epoch T1, the surplus process U(t) will renew itself with different
initial reserve. The probability of this event is Pr(Y1 < B1). If Y1 ≥ B1, the
occurrence of the by-claim X1 will be delayed to T2, i.e., the delayed by-claim
X1 and main claim Y2 occur simultaneously. In this case, U(t) will not renew
itself but transfer to the auxiliary model described in the paragraph above.
The probability of this event is Pr(Y1 ≥ B1). Remember that the survival
probability of the auxiliary model is Φ1(u). Taking what happened at the first
epoch T1 into account, we can set up the following equation for Φ(u):
(3.1)

Φ(u) =

∫ ∞

0

λe−λt

∫ ∫

0<x+y<u+ct

Pr(y < B1)Φ(u + ct− x− y)dF (y)dG(x)dt

+

∫ ∞

0

λe−λt

∫ u+ct

0

Pr(y ≥ B1)Φ1(u+ ct− y)dF (y)dt.

With the auxiliary model, similar analysis gives
(3.2)

Φ1(u) =

∫ ∞

0

λe−λt

∫ ∫

0<x+y<u+ct

Pr(y < B1)Φ(u+ ct− x− y)dF (y)dG ∗G(x)dt

+

∫ ∞

0

λe−λt

∫ ∫

0<x+y<u+ct

Pr(y ≥ B1)Φ1(u + ct− y)dF (y)dG(x)dt,

where ∗ denotes the operation of convolution.
Setting s = u + ct in (3.1), (3.2) and differentiating with respect to u, we

get the following system of integro-differential equations:

(3.3)

c
dΦ(u)

du
− λΦ(u)

+ λ

∫ ∫

0<x+y<u

Pr(y < B1)Φ(u − x− y)dF (y)dG(x)

+ λ

∫ u

0

Pr(y ≥ B1)Φ1(u − y)dF (y) = 0,

and

(3.4)

c
dΦ1(u)

du
− λΦ1(u)

+ λ

∫ ∫

0<x+y<u

Pr(y < B1)Φ(u − x− y)dF (y)dG ∗G(x)

+ λ

∫ ∫

0<x+y<u

Pr(y ≥ B1)Φ1(u− x− y)dF (y)dG(x) = 0.
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4. Laplace transforms

Henceforth, we focus on our interest on the survival probabilities Φ(u) and
Φ1(u). Their Laplace transforms can be derived as follows.

For Re s ≥ 0, we define

χ̃1(s) =

∫ ∞

y=0

exp(−sy)χ1(y)dy = E[exp(−sF )1(F≥B)]

=

∫ ∞

y=0

exp(−sy)B(y)dF (y);

χ̃2(s) =

∫ ∞

y=0

exp(−sy)χ2(y)dy = E[exp(−sF )1(F<B)]

=

∫ ∞

y=0

exp(−sy)(1− B(y))dF (y);

b̃(s) =

∫ ∞

0

exp(−sy)dF (y);

b̃1(s) =

∫ ∞

0

exp(−sx)dG(x);

b̃2(s) =

∫ ∞

0

exp(−sx)dG ∗G(x).

Note that b̃(s) = χ̃1(s) + χ̃2(s) and b̃2(s) = (b̃1(s))
2.

We also define the Laplace transforms of Φ(u) and Φ1(u) as

Φ̃(s) =

∫ ∞

0

exp(−su)Φ(u)du; Φ̃1(s) =

∫ ∞

0

exp(−su)Φ1(u)du.

Taking Laplace transforms of (3.3) and (3.4) and making some simplifications,
we obtain

c(−Φ(0) + sΦ̃(s))− λΦ̃(s) + λΦ̃(s)χ̃2(s)b̃1(s) + λΦ̃1(s)χ̃1(s) = 0,

c(−Φ1(0) + sΦ̃1(s))− λΦ̃1(s) + λΦ̃(s)χ̃2(s)b̃2(s) + λΦ̃1(s)χ̃1(s)b̃1(s) = 0,

which can further be simplified to

(4.1) Φ̃(s) =
cΦ(0)α(s) − λcΦ1(0)χ̃1(s)

(cs− λ){cs− λ+ λb̃(s)b̃1(s)}
,

(4.2) Φ̃1(s) =
cΦ1(0)β(s) − λcΦ(0)b̃2(s)χ̃2(s)

(cs− λ){cs− λ+ λb̃(s)b̃1(s)}
,

where

α(s) = cs− λ+ λb̃1(s)χ̃1(s); β(s) = cs− λ+ λb̃1(s)χ̃2(s).

In order to obtain Φ̃(s) and Φ̃1(s), for the further sake of deriving Φ(u) and
Φ1(u), we only need to find Φ(0) and Φ1(0).
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Note that the denominators on the right-hand side of (4.1) and (4.2) coincide.
Denoting the denominator as

△(s) = (cs− λ){cs− λ+ λb̃(s)b̃1(s)},

we have

△(s) = cs

{

(cs− 2λ) + λb̃(s)b̃1(s) +
λ2 − λ2b̃(s)b̃1(s)

cs

}

.

Since limu→+∞Φ(u) = 1, by final-value theorem of Laplace transform, we

have lims→0sΦ̃(s) =1, then

(4.3)

1 = lim
s→0

s
cΦ(0)α(s)− λcΦ1(0)χ̃1(s)

(cs− λ){cs− λ+ λb̃(s)b̃1(s)}

= lim
s→0

s
cΦ(0)

(

cs− λ+ λb̃1(s)χ̃1(s)
)

− λcΦ1(0)χ̃1(s)

△(s)

=
Φ(0)

(

b̃1(0)χ̃1(0)− 1
)

− Φ1(0)χ̃1(0)

−2 + b̃(0)b̃1(0)−
λ (b̃(s)b̃1(s))

′
∣

∣

∣

s=0

c

=
Φ(0)χ̃2(0) + Φ1(0)χ̃1(0)

1− λ
c
(µF + µG)

,

where b̃
′

(0) = −µF , b̃
′

1(0) = −µG, and b̃
′

2(0) = −2µG. (4.3) is an equation for

Φ(0) and Φ1(0). In order to derive the explicit results for Φ̃(s) and Φ̃1(s), we
must obtain a second equation for Φ(0) and Φ1(0). Using Rouché’s theorem,
we have:

Proposition 4.1. Equation ∆(s) = 0 has exactly one positive real root, say

σ = λ/c, on the right half complex plane.

Proof. Define l(s) = cs − λ + λb̃(s)b̃1(s), then ∆(s) = (cs − λ)l(s). It is easy
to check that l(0) = 0 and lims→+∞ l(s) = +∞. Also, for s ≥ 0,

l
′

(s) = c+ λb̃
′

(s)b̃1(s) + λb̃(s)b̃
′

1(s) > c− λ(µF + µG) > 0,

then l(s) is an increasing function of s. Hence, l(s) = 0 has no positive real root.
Noting that λ/c is one positive real root of equation ∆(s) = 0, we conclude
that equation ∆(s) = 0 has exactly one positive real root, say, σ = λ/c.

Now, we prove that σ = λ/c is the exactly one positive real root of equation
∆(s) = 0 on the right half complex plane. In order to prove this result, we
only need to prove that l(s) = 0 has no positive real root on the right half

complex plane. For δ > 0, assume that lδ(s) = cs − λ − δ + λb̃(s)b̃1(s). If
s is on the half circle: |z| = r(r > 0) and Re(z) ≥ 0 on the complex plane,

|cs−λ−δ| > λ = λb̃(0)b̃1(0) > |λb̃(s)b̃1(s)| for r is sufficiently large, while if s is

on the imaginary axis, Re(s) = 0, |cs− λ− δ| > λ ≥ |λb̃(s)b̃1(s)|. This implies
on the boundary of the contour enclosed by the half circle and the imaginary
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axis, that |cs− λ− δ| > |λb̃(s)b̃1(s)|. We conclude, by Rouché’s theorem, that
on the right half complex plane, the number of roots of the equation lδ(s) = 0
equals the number of roots of the equation cs − λ − δ = 0. Furthermore, the
latter has exactly one root on the right half complex plane. It follows that
lδ(s) = 0 has exactly one positive real root, say, ρ(δ), on the right half complex
plane.

Finally, it is easy to see that ρ(δ) → 0 as δ → 0+ from the expression of
lδ(s). According to limδ→0+ lδ(s) = l(s), we can conclude that l(s) = 0 has no
root with positive real part on the right half plane.

It follows from all above that equation ∆(s) = 0 has exactly one positive real
root σ = λ/c on the right half complex plane. This completes the proof. �

Since Φ̃(s) and Φ̃1(s) are analytic functions for Re(s) ≥ 0, σ must also be
a zero of the numerators of (4.1) and (4.2). In both cases this yields the same
relation between Φ(0) and Φ1(0), namely

(4.4) Φ(0) =
Φ1(0)

b̃1(σ)
.

Combining (4.3) and (4.4), we can get the constants:

Φ(0) =
λχ̃1(σ)(c− λµF − λµG)

−λcχ̃1(0) + c2σχ̃1(0) + cλχ̃1(σ)b̃1(σ)χ̃1(0) + λcχ̃1(σ)χ̃2(0)
,

Φ1(0) =
(c− λµF − λµG)(cσ − λ+ λχ̃1(σ)b̃1(σ))

−λcχ̃1(0) + c2σχ̃1(0) + cλχ̃1(σ)b̃1(σ)χ̃1(0) + λcχ̃1(σ)χ̃2(0)
.

Remark. 1. Let B = +∞, i.e., Pr(Y < B) = 1. Then χ̃1(s) = 0 and

χ̃2(s) = b̃(s). In this case, each main claim and its associated by-claim occur
simultaneously. Actually, the risk model given by (2.1) is the classic compound
Poisson risk model and the claim amounts are {Yi+Xi}i≥1. Then Eq.(4.1) can
be simplified as

(4.5) Φ̃(s) =
cΦ(0)

cs− λ+ λb̃(s)b̃1(s)
,

which is the Laplace transform of the non-ruin probability in the classic com-
pound Poisson risk model. Similarly, since limu→+∞ Φ(u) = 1 , by final value

theorem of Laplace transform, we have lims→0 sΦ̃(s) =1, i.e.,

1 = lim
s→0

s
cΦ(0)

s(c+ λ(b̃(s)b̃1(s)−1)
s

)
=

cΦ(0)

c− λ(µF + µG)
,

then we obtain

(4.6) Φ(0) =
c− λ(µF + µG)

c
,

which is the well-known formula for the non-ruin probability with zero initial
capital in the classic compound Poisson risk model.
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2. Let B be a constant, i.e., Pr(Y ≥ B) = θ. Then χ̃1(s) = θb̃(s) and

χ̃2(s) = (1 − θ)b̃(s). In this case, each main claim and its associated by-claim
occur simultaneously with probability 1− θ, or the occurrence of the by-claim
may be delayed with probability θ. Actually, the risk model given by (2.1) is
the compound Poisson risk model with delayed claims studied by Xie and Zou
[12]. Then Eq.(4.1) can be simplified as

(4.7) Φ̃(s) =
cΦ(0)

(

cs− λ+ λθb̃(s)
(

b̃1(s)− b̃1(
λ
c
)
))

(cs− λ)(cs − λ+ λb̃(s)b̃1(s))
.

This equation is consistent with Eq.(4.1) in Xie and Zou [12]. Similarly, since
limu→+∞ Φ(u) = 1, by final value theorem of Laplace transform, we have

lims→0 sΦ̃(s) =1, i.e.,

1 = lim
s→0

s
cΦ(0)

(

cs− λ+ λθb̃(s)
(

b̃1(s)− b̃1(
λ
c
)
))

(cs− λ)(cs− λ+ λb̃(s)b̃1(s))

= lim
s→0

s
cΦ(0)

(

cs− λ+ λθb̃(s)
(

b̃1(s)− b̃1(
λ
c
)
))

cs
{

(cs− 2λ) + λb̃(s)b̃1(s) +
λ2−λ2b̃(s)b̃1(s)

cs

}

=
Φ(0)

(

−1 + θb̃(0)
(

b̃1(0)− b̃1(
λ
c
)
))

{

−2 + b̃(0)b̃1(0)−
λ (b̃(s)b̃1(s))

′
∣

∣

∣

s=0

c

}

=
Φ(0)

(

−1 + θ
(

1− b̃1(
λ
c
)
))

−1 + λ
c
(µF + µG)

,

then we obtain

(4.8) Φ(0) =
1− λ

c
(µF + µG)

1− θ
(

1− b̃1(
λ
c
)
) ,

which is the formula for the survival probability with zero initial capital in the
compound Poisson risk model with delayed claims.

5. Defective renewal equations for survival probabilities

In this section, our goal is to show that the survival probabilities also satisfy
a defective renewal equation in the continuous time risk model with delayed
claims. To identify the form of this defective renewal equation, we first analyse
the Laplace transform of Φ(u).

As in Dickson and Hipp [5], we define an operator Γr of a real-valued function
f , with respect to a complex number r, to be

Γrf(x) =

∫ ∞

x

e−r(y−x)f(y)dy, x ≥ 0.
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It is clear that the Laplace transform of f , f̃(s), can be expressed as Γsf(0),
and that for distinct r1 and r2,

Γr1Γr2f(x) = Γr2Γr1f(x) =
Γr1f(x)− Γr2f(x)

r2 − r1
, x ≥ 0.

If r1 = r2 = r,

Γr1Γr2f(x) =

∫ ∞

x

(y − x)e−r(y−x)f(y)dy, x ≥ 0.

The properties for this operator can be found in Dickson and Hipp [5].

Lemma 5.1. The Laplace transform Φ̃(s) of the survival probability satisfies

(5.1) Φ̃(s) =
λΓsΓ0b ∗ b1(0)

c
Φ̃(s) + Φ(0)

(

1

s
−

λχ̃1(s)

cs
ΓsΓσb1(0)

)

.

Proof. Substituting (4.4) into (4.1), we can get

Φ̃(s) =
cΦ(0)

(

cs− λ+ λχ̃1(s)(b̃1(s)− b̃1(σ))
)

(cs− λ){cs− λ+ λb̃(s)b̃1(s)}

=
cs(s− σ)Φ(0)

(

c
s
+ λχ̃1(s)

s

b̃1(s)−b̃1(σ)
s−σ

)

cs(s− σ)(c− λ−λb̃(s)b̃1(s)
s

)

=
Φ(0)

(

c
s
− λχ̃1(s)

s
ΓsΓσb1(0)

)

c− λΓsΓ0b ∗ b1(0)
,

which leads to (5.1). This completes the proof. �

Using Lemma 5.1, we are now in a position to derive the defective renewal
equation for Φ(u).

Theorem 5.1. Φ(u) satisfies the following defective renewal equation

(5.2) Φ(u) =
λ(µF + µG)

c

∫ u

0

Φ(u− y)ϑ(y)dy + z(u),

where

ϑ(y) =
Γ0b ∗ b1(y)

µF + µG

, z(u) = Φ(0)

(

1−
λ

c
∗ χ1 ∗ Γσb1(u)

)

.

Proof. Inverting the Laplace transform in (5.1), one finds

Φ(u) =
λ

c

∫ u

0

Φ(u− y)Γ0b ∗ b1(y)dy +Φ(0)

(

1−
λ

c
∗ χ1 ∗ Γσb1(u))

)

=
λΓ0Γ0b ∗ b1(0)

c

∫ u

0

Φ(u− y)
Γ0b ∗ b1(y)

Γ0Γ0b ∗ b1(0)
dy + z(u)

=
λ(µF + µG)

c

∫ u

0

Φ(u− y)
Γ0b ∗ b1(y)

µF + µG

dy + z(u),
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which corresponds to (5.2).
For (5.2) to be a defective renewal equation, it remains to show that

λ(µF + µG)

c
< 1.

The inequality is the positive safely loading condition (2.2). Thus, we complete
the proof. �

Now, we define an associated compound geometric distribution function
K(u) = 1−K(u) by

K(u) =
ζ

1 + ζ

∞
∑

n=1

(

1

1 + ζ

)n

Z
∗n
(u), u ≥ 0,

where ζ = (c − λ(µF + µG))/[λ(µF + µG)], Z
∗n
(u) is the tail of the n-fold

convolution of Z(u) = 1−Z(u) =
∫ u

0 ϑ(y)dy. Explicit solutions of the defective
renewal Eq.(5.2) can be derived directly by applying Theorem 2.1 of Lin and
Willmot [6].

Proposition 5.1. The survival probability Φ(u) satisfying the defective renewal
equation (5.2) can be expressed as

(5.3) Φ(u) =
1

ζ

∫ u

0

[1 −K(u− y)]dH(y) +
H(0)

ζ
[1−K(u)],

or

(5.4) Φ(u) =
1

ζ

∫ u

0

H(u− y)dK(y) +
1

1 + ζ
H(u),

where H(u) = cz(u)/[λ(µF + µG)].

Proof. The proof is straightforward using Theorem 2.1 of Lin and Willmot [6]
and Eq.(5.2). �

6. Explicit results for exponential claim size distributions

We now consider the case where both the claim sizes are exponentially dis-
tributed, with distribution functions F ∼ Exp(ν) and G ∼ Exp(ω), respec-
tively, where ν = 1

µF
and ω = 1

µG
. Then we have

b̃(s) =
ν

ν + s
, b̃1(s) =

ω

ω + s
, b̃2(s) =

ω2

(ω + s)2
.

For the special case B ∼ Exp(µ) we obtain

χ̃2(s) =

∫ ∞

y=0

exp(−sy) exp(−µy)dF (y) = b(s+ µ), χ̃1(s) = b(s)− b(s+ µ).

So we can derive

χ̃2(s) =
ν

ν + s+ µ
; χ̃1(s) =

ν

ν + s
−

ν

ν + s+ µ
;
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and σ in (4.4) is the unique solution s with Re(s) > 0 of

(cs− λ)

(

cs− λ+ λ

(

ω

ω + s

)(

ν

ν + s

))

= 0.

By solving this equation, we obtain four roots:

σ1 = 0,

σ2 =
λ

c
,

σ3 =
λ− cν − cω −

√

(−λ+ cν + cω)2 − 4c(−λν − λω + cνω)

2c
,

σ4 =
λ− cν − cω +

√

(−λ+ cν + cω)2 − 4c(−λν − λω + cνω)

2c
.

The positive relative security loading condition (2.2) implies that only σ2 has
positive real part. Hence, σ = λ/c is the only zero with positive real part on
the right half plane. It proves the correctness of Proposition 4.1.

Taking the expressions of b̃1(s), b̃2(s), χ̃1(s) and χ̃2(s) into (4.1) and (4.2),
we have

Φ̃(s) =
−Φ1(0)λcµν(s+ ω) + Φ(0)c2s(s+ ν)(s+ µ+ ν)(s + ω)− Φ(0)λcf1(s)

s(cs− λ)(s + µ+ ν)(c(s + ν)(s+ ω)− λ(s+ ν + ω))
,

and

Φ̃1(s) =
c(s+ ν)(−Φ(0)λνω2 +Φ1(0)(s+ ω)f2(s))

s(cs− λ)(s+ µ+ ν)(c(s+ ν)(s + ω)− λ(s+ ν + ω))
,

where

f1(s) = s3 + s2(µ+ 2ν + ω) + s(µ(ν + ω) + ν(ν + 2ω)) + ν2ω,

f2(s) = cs(s+ µ+ ν)(s+ ω)− λ(s2 + µω + s(µ+ ν + ω)).

Substituting Φ(0) and Φ1(0) into Φ̃(s) and Φ̃1(s) and taking the inverse
Laplace transforms, we can derive explicit expressions for Φ(u) and Φ1(u),
(6.1)

Φ(u) = 1 +
e−u(µ+ν)λµ(cνω − λ(ν + ω))

(λν + c(µ+ ν)ω)(λ(µ − ω) + cµ(µ+ ν − ω))

+
e−

u(−λ+c(ν+ω)+ρ)
2c {λ(µ+ ν)(λ(ν + ω)− cνω) (ϑ− (λ+ c(µ+ ν))(λ + cω)ρ)}

cνω(λν + c(µ+ ν)ω)ρ {λ2 + cλ(µ+ ν)− c2((ν − ω)ω + µ(ν + ω))− (λ+ c(µ− ω))ρ}

−
e−

u(−λ+c(ν+ω)−ρ)
2c {λ(µ + ν)(λ(ν + ω)− cνω) (ϑ+ (λ+ c(µ+ ν))(λ + cω)ρ)}

cνω(λν + c(µ+ ν)ω)ρ {λ2 + cλ(µ+ ν)− c2((ν − ω)ω + µ(ν + ω)) + (λ+ c(µ− ω))ρ}
,
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Figure 1. Survival probabilities Φ(u) (solid line) and Φ1(u)
(dashed line) in Example 1.

and
(6.2)

Φ1(u) = 1−
e−u(µ+ν)λµω(cνω − λ(ν + ω))

(µ+ ν − ω)(λν + c(µ+ ν)ω)(λ(µ − ω) + cµ(µ+ ν − ω))

− e−
u(−λ+c(ν+ω)+ρ)

2c {λ(µ+ ν)(λ(ν + ω)− cνω) (ϑ− (λ+ c(µ+ ν))(λ + cω)ρ)}

ν(λν + c(µ+ ν)ω)ρ {(λ2 + cµ(λ − cν))ρ− (λ3 + c3µν(ν − ω) + cλ(cω(µ− 2ν) + λ(µ+ ν + ω)))}

− e−
u(−λ+c(ν+ω)−ρ)

2c {λ(µ+ ν)(λ(ν + ω)− cνω) (ϑ+ (λ+ c(µ+ ν))(λ + cω)ρ)}

ν(λν + c(µ+ ν)ω)ρ {(λ2 + cµ(λ − cν))ρ+ (λ3 + c3µν(ν − ω) + cλ(cω(µ− 2ν) + λ(µ+ ν + ω)))}

+
e−uω(µ+ ν)(ν − ω)(cνω − λ(ν + ω))

ν(µ+ ν − ω)(λν + c(µ+ ν)ω)
, u ≥ 0,

where

ρ =
√

λ2 + c2(ν − ω)2 + 2cλ(ν + ω),

ϑ = λ3 − c3(µ− ν)(ν − ω)ω + c2λ(ν(µ + ν) + (2µ+ ν)ω + ω2)

+ cλ2(µ+ 2(ν + ω)).

Example 1. Let λ = 1, c = 2.5, B ∼ Exp(2.8), F ∼ Exp(2), G ∼ Exp(3). The
positive relative security loading condition (2.2) is obviously fulfilled. Moreover,
we have σ = 0.4. Accordingly, explicit expressions for Φ(u) and Φ1(u), when
the claim sizes from both classes are exponentially distributed, are given by
(6.1) and (6.2),

Φ(u) = 1 + 0.0594228e−4.8u − 0.0754902e−3.43578u − 0.268143e−1.16422u,

Φ1(u) = 1− 0.0990379e−4.8u + 0.519688e−3.43578u − 0.438194e−1.16422u

− 0.350877e−3u.
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Figure 1 shows the survival probabilities Φ(u) and Φ1(u) in Example 1, for
different values of u ∈ [0, 10]. One can see from the graph that both Φ(u)
and Φ1(u) are strictly increasing functions of u. They are increasing sharply
when u is small (between 0 and approximately 2) and turn to be flatter when
u increases. Moreover Φ(u) is always greater than Φ1(u).

Example 2. In this example, we show the influence of the threshold B on
the survival probabilities. Let λ = 1, c = 2, F ∼ Exp(1.5), G ∼ Exp(1),
B ∼ Exp(µ). The positive relative security loading condition (2.2) is obviously
fulfilled. Table 1 illustrates the influence of the coefficient µ of threshold B
on the survival probabilities. We see from Table 1 that the coefficient µ of
threshold B has a significant effect on the non-ruin probabilities. Table 1 also
shows the fact that non-ruin probability is an increasing function of µ.

Table 1. Survival probabilities Φ(u) in Example 2.

u\µ 0.5 1 1.5 2 2.5 3
u = 0 0.181818 0.192308 0.199999 0.205882 0.210526 0.214286
u = 1 0.279932 0.293465 0.302962 0.309952 0.315291 0.319492
u = 2 0.370831 0.383514 0.392104 0.398296 0.402970 0.406625
u = 3 0.449991 0.461160 0.468662 0.474058 0.478129 0.481315
u = 4 0.519022 0.528788 0.535341 0.540055 0.543613 0.546396
u = 5 0.579344 0.587883 0.593613 0.597734 0.600845 0.603279
u = 6 0.632092 0.639559 0.644569 0.648174 0.650895 0.653024
u = 7 0.678223 0.684754 0.689137 0.692289 0.694669 0.696531
u = 8 0.718570 0.724282 0.728115 0.730872 0.732954 0.734582
u = 9 0.753858 0.758854 0.762206 0.766438 0.766438 0.767862
u = 10 0.784721 0.789091 0.792023 0.794132 0.795724 0.796969

7. Concluding remarks

In this paper, we study a continuous risk model with delayed claims. In
this risk model, there will be a main claim Yi at every epoch Ti of the Poisson
process and the main claim Yi will induce a by-claim Xi. Moreover, if the main
claim amount Yi is less than a threshold Bi, the by-claim Xi and its associated
main claim Yi occur simultaneously; if the main claim amount Yi is larger than
or equal to the threshold Bi, the occurrence of the by-claim Xi is delayed to
Ti+1. If the occurrence of the by-claim Xi is delayed to Ti+1, then the delayed
by-claimXi and main claim Yi+1 occur simultaneously. The quantities {Bi}i≥1

are assumed to be i.i.d. non-negative random variables. We show how to apply
the Laplace transform to this dependent risk model. The results obtained in
this paper show (although the risk process is neither a compound renewal nor
a compound Poisson one) that the survival probability satisfies the defective
renewal equation. The explicit results for survival probabilities are derived
when the claims are exponentially distributed. Some examples and numerical
illustrations are also given.
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