Browse > Article
http://dx.doi.org/10.1016/j.ijnaoe.2020.12.001

An investigation on the effect of the wall treatments in RANS simulations of model and full-scale marine propeller flows  

Choi, Jung-Kyu (Department of Naval Architecture and Ocean Engineering, Mokpo National University)
Kim, Hyoung-Tae (Department of Naval Architecture and Ocean Engineering, Chungnam National University)
Publication Information
International Journal of Naval Architecture and Ocean Engineering / v.12, no.1, 2020 , pp. 967-987 More about this Journal
Abstract
A numerical analysis is carried out for the marine propellers in open water conditions to investigate the effect of the wall treatments in model and full scale. The standard wall function to apply the low of the wall and the two layer zonal model to calculate the whole boundary layer for a transition phenomenon are used with one turbulence model. To determine an appropriate distance of the first grid point from the wall when using the wall function, a formula based on Reynolds number is suggested, which can estimate the maximum y+ satisfying the logarithmic law. In the model scale, it is confirmed that a transition calculation is required for a model scale propeller with low Reynolds number that the transient region appears widely. While in the full scale, the wall function calculation is recommended for efficient calculations due to the turbulence dominant flow for large Reynolds number.
Keywords
Marine propeller; Model and full scale; Computational fluid dynamics; Boundary layer; Wall function;
Citations & Related Records
Times Cited By KSCI : 10  (Citation Analysis)
연도 인용수 순위
1 Menter, F.R., Langtry, R.B., Likki, S.R., Suzen, Y.B., Huang, P.G., Volker, S., 2006. A correlation-based transition model using local variables-Part I: Model formulation. J. Turbomach. 128 (3), 413-422.   DOI
2 Moran-Guerrero, A., Gonzales-Gutierrez, L.M., Oliva-Remola, A., 2018. On the influence of transition modeling and crossflow effects on open water propeller simulations. Ocean Eng. 156, 101-119.   DOI
3 Müller, S.B., Abdel-Maksoud, M., Hilbert, G., 2009. Scale effects on propellers for large container vessels. Proceedings Of First International Symposium on Marine Propulsors, Trondheim, Norway. June.
4 Paik, Kwang-Jun, 2017. Numerical study on the hydrodynamic characteristics of a propeller operating beneath a free surface. Int. J. Naval Arch. Ocean Eng. 9 (2017), 655-667.   DOI
5 Patel, V.C., 1998. Flow at high Reynolds number and over rough surfaces-achilles heel of CFD. J. Fluid Eng. 120 (3), 1-26.   DOI
6 Rao, G.N.V., Keshavan, N.R., 1972. Axisymmetric turbulent boundary layers in zero pressure-gradient flows. J. Appl. Mech. 39 (1), 25-32.   DOI
7 Schlichting, H., 1979. Boundary layer theory, Seventh ed. McGraw-Hill, USA.
8 https://simman2014.dk/, SIMMAN, 2014.
9 Walters, D.K., Cokljat, D., 2008. A three-equation Eddy-viscosity model for Reynold-averaged Navier-Stokes simulations of transitional flow. J. Fluid Eng. 130 (12), 14, 121401.   DOI
10 Wang, Xiao, Walters, Keith, 2012. Computational analysis of marine-propeller performance using transition-sensitive turbulence modeling. J. Fluid Eng. 134 (7), 10, 071107.   DOI
11 White, F.H., 1974. Viscous Fluid Flow. McGraw-Hill, USA.
12 Choi, J.K., Kim, H.T., 2010. A study of using wall function for numerical analysis of high Reynolds number turbulent flow. J. Soc. Naval Arch. Korea 47 (5), 647-655.   DOI
13 Yao, Huilan, Zhang, Huaixin, 2018. A simple method for estimating transition locations on blade surface of model propellers to be used for calculating viscous force. Int. J. Naval Arch. Ocean Eng. 10 (2018), 477-490.   DOI
14 Youssef, F.A., Kassab, S.Z., Al-Fahed, S.F., 1998. Low Reynolds number axisymmetric turbulent boundary layer on a cylinder. Mech. Res. Commun. 25 (1), 33-48.   DOI
15 ANSYS, 2015. ANSYS Documentation. ANSYS Inc.
16 Bhattacharyya, Anirban, Krasilnikov, Vladimir, Steen, Sverre, 2016. Scale effects on open water characteristics of a controllable pitch propeller working within different duct designs. Ocean Eng. 112, 226-242.   DOI
17 Carrica, P.M., Castro, A.M., Stern, F., 2013. Self-propulsion computations using a speed controller and a discretized propeller with dynamic overset grids. J. Mar. Sci. Technol. 15, 316-330.   DOI
18 Castro, A.M., Carrica, P.M., Stern, F., 2011. Full scale self-propulsion computations using discretized propeller for the KRISO container ship KCS. Comput. Fluid 51, 35-47.   DOI
19 Choi, J.K., 2014. A Study on Estimation of Self-Propulsion Performance of a Ship Using Numerical Analysis. Ph. D. Thesis. Chungnam National University, Daejeon, Rep. of Korea.
20 Choi, J.E., Kim, J.H., Lee, H.G., 2011. Computational study of the scale effect on resistance and propulsion performance of VLCC. J. Soc. Naval Arch. Korea 48 (3), 222-232.   DOI
21 Coles, D.E., 1954. Measurements of turbulent friction on a smooth flat plate in supersonic flow. J. Aeronaut. Sci. 21 (7), 433-448.   DOI
22 EFFORT(European fullscale flow research and technology), 1998. https://cordis.europa.eu/programme/id/FP5-GROWTH.
23 Fage, A., Falkner, V.M., 1930. An experimental determination of the intensity of friction on the surface of an aerofoil. Proceed. Royal Soc. A 129 (810), 378-410.
24 Gaggero, S., Villa, D., Brizzolara, S., 2010. RANS and PANEL method for unsteady flow propeller analysis. Proceed. 9th Int. Conf. Hydrodyn. 11-86, 564-569. Shanghai, China October.
25 Kim, K.S., Kim, K.Y., Ahn, J.W., 2000. Experimental correlation analysis of propeller open-water characteristics at towing tank and cavitation tunnel. J. Soc. Naval Arch. Korea 37 (1), 26-39.
26 ITTC propeller committee, 1984. Report of the propeller committee. 17th Proceedings of International Towing Tank Conference, ITTC, Goteborg, Sweden, 8 - 15 September.
27 Jessup, S.D., 1989. An Experimental Investigation of Viscous Aspects of Propeller Blade Flow. Ph.D. Thesis. The Catholic university of America.
28 JoRes(Joint Research Project), 2019. https://jores.net/.
29 Kim, J., Park, I.R., Kim, K.S., Van, S.H., 2005. RANS simulations for KRISO container ship and VLCC tanker. J. Soc. Naval Arch. Korea 42 (6), 593-600.   DOI
30 Kim, Min-Geon, Ahn, Hyung Taek, Lee, Jin-Tae, Lee, Hong-Gi, 2014. Fully unstructured mesh based computation of viscous flow around marine propellers. J. Soc. Naval Arch. Korea 51 (2), 162-170.   DOI
31 Kim, K.S., Kim, Y.C., Kim, J., Van, S.H., 2018. RANS simulations for propeller open water tests in towing tank. Proceedings of the Twenty-Eighth(2018) International Ocean and Polar Engineering Conference. ISOPE, pp. 782-789.
32 Kulczyk, J., Skraburski, L., Zawislak, M., 2007. Analysis of screw propeller 4119 using the Fluent system. Arch. Civil and Mech. Eng. 7 (4), 130-137.
33 ITTC propeller committee, 1978. Report of the propeller committee. 15th Proceedings of International Towing Tank Conference. ITTC, Hague, Netherlands, September.
34 Launder, B.E., Spalding, D.B., 1974. The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 3, 269-289.   DOI
35 Lee, Joon-Hyoung, Kim, Moon-Chan, Shin, Yong-Jin, Kang, Jin-Gu, Jang, Hyun-Gil, 2017. A study on performance of tip rake propeller in propeller open water condition. J. Soc. Naval Arch. Korea 54 (1), 10-17.   DOI