• Title/Summary/Keyword: Numerical Approximation

Search Result 1,033, Processing Time 0.029 seconds

A Study about Effectiveness and Usefulness of a FEM Slug Test Model (유한 요소기법을 이용한 Slug시험 모델의 타당성 및 유용성 연구)

  • 한혜정;최종근
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.7 no.2
    • /
    • pp.89-96
    • /
    • 2000
  • Slug tests are the most widely used field method for quantification of hydraulic conductivity of porous media. Well recovery is affected by well casing, borehole radii, screened length, hydraulic conductivity, and specific storage of porous media. In this study, a new slug tests model was developed through finite element approximation and the validity and usefulness of the model were tested in various ways. Water level fluctuation in a well under slug test and cons-equent groundwater flow in the surrounding porous medium were appropriately coupled through estimation of well-flux using an iteration technique. Numerical accuracy of the model was verified using the Cooper et al. (1967) solution. The model has advantages in simulations for monitored slug tests, partial penetration, and inclusion of storage factor. Volume coverage of slug tests is significantly affected by storage factor. Magnitude and speed of propagation of head changes from a well increases as storage factor becomes low. It will be beneficial to use type curves of monitored head transients in the surrounding porous formation for estimation of specific storage. As the vertical component of groundwater flow is enhanced, the influence of storage factor on well recovery decreases. For a radial-vertical flow around a partially penetrated well, deviations between hydraulic estimates by various methods and data selection of recovery curve are negligible on practical purposes, whereas the deviations are somewhat significant for a radial flow.

  • PDF

Experimental Validation of Isogeometric Optimal Design (아이소-지오메트릭 형상 최적설계의 실험적 검증)

  • Choi, Myung-Jin;Yoon, Min-Ho;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.345-352
    • /
    • 2014
  • In this paper, the CAD data for the optimal shape design obtained by isogeometric shape optimization is directly used to fabricate the specimen by using 3D printer for the experimental validation. In a conventional finite element method, the geometric approximation inherent in the mesh leads to the accuracy issue in response analysis and design sensitivity analysis. Furthermore, in the finite element based shape optimization, subsequent communication with CAD description is required in the design optimization process, which results in the loss of optimal design information during the communication. Isogeometric analysis method employs the same NURBS basis functions and control points used in CAD systems, which enables to use exact geometrical properties like normal vector and curvature information in the response analysis and design sensitivity analysis procedure. Also, it vastly simplify the design modification of complex geometries without communicating with the CAD description of geometry during design optimization process. Therefore, the information of optimal design and material volume is exactly reflected to fabricate the specimen for experimental validation. Through the design optimization examples of elasticity problem, it is experimentally shown that the optimal design has higher stiffness than the initial design. Also, the experimental results match very well with the numerical results. Using a non-contact optical 3D deformation measuring system for strain distribution, it is shown that the stress concentration is significantly alleviated in the optimal design compared with the initial design.

Transmitter Beamforming and Artificial Noise with Delayed Feedback: Secrecy Rate and Power Allocation

  • Yang, Yunchuan;Wang, Wenbo;Zhao, Hui;Zhao, Long
    • Journal of Communications and Networks
    • /
    • v.14 no.4
    • /
    • pp.374-384
    • /
    • 2012
  • Utilizing artificial noise (AN) is a good means to guarantee security against eavesdropping in a multi-inputmulti-output system, where the AN is designed to lie in the null space of the legitimate receiver's channel direction information (CDI). However, imperfect CDI will lead to noise leakage at the legitimate receiver and cause significant loss in the achievable secrecy rate. In this paper, we consider a delayed feedback system, and investigate the impact of delayed CDI on security by using a transmit beamforming and AN scheme. By exploiting the Gauss-Markov fading spectrum to model the feedback delay, we derive a closed-form expression of the upper bound on the secrecy rate loss, where $N_t$ = 2. For a moderate number of antennas where $N_t$ > 2, two special cases, based on the first-order statistics of the noise leakage and large number theory, are explored to approximate the respective upper bounds. In addition, to maintain a constant signal-to-interferenceplus-noise ratio degradation, we analyze the corresponding delay constraint. Furthermore, based on the obtained closed-form expression of the lower bound on the achievable secrecy rate, we investigate an optimal power allocation strategy between the information signal and the AN. The analytical and numerical results obtained based on first-order statistics can be regarded as a good approximation of the capacity that can be achieved at the legitimate receiver with a certain number of antennas, $N_t$. In addition, for a given delay, we show that optimal power allocation is not sensitive to the number of antennas in a high signal-to-noise ratio regime. The simulation results further indicate that the achievable secrecy rate with optimal power allocation can be improved significantly as compared to that with fixed power allocation. In addition, as the delay increases, the ratio of power allocated to the AN should be decreased to reduce the secrecy rate degradation.

Numerical studies on approximate option prices (근사적 옵션 가격의 수치적 비교)

  • Yoon, Jeongyoen;Seung, Jisu;Song, Seongjoo
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.2
    • /
    • pp.243-257
    • /
    • 2017
  • In this paper, we compare several methods to approximate option prices: Edgeworth expansion, A-type and C-type Gram-Charlier expansions, a method using normal inverse gaussian (NIG) distribution, and an asymptotic method using nonlinear regression. We used two different types of approximation. The first (called the RNM method) approximates the risk neutral probability density function of the log return of the underlying asset and computes the option price. The second (called the OPTIM method) finds the approximate option pricing formula and then estimates parameters to compute the option price. For simulation experiments, we generated underlying asset data from the Heston model and NIG model, a well-known stochastic volatility model and a well-known Levy model, respectively. We also applied the above approximating methods to the KOSPI200 call option price as a real data application. We then found that the OPTIM method shows better performance on average than the RNM method. Among the OPTIM, A-type Gram-Charlier expansion and the asymptotic method that uses nonlinear regression showed relatively better performance; in addition, among RNM, the method of using NIG distribution was relatively better than others.

Influence on Short Channel Effects by Tunneling for Nano structure Double Gate MOSFET (나노구조 이중게이트 MOSFET에서 터널링이 단채널효과에 미치는 영향)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.3
    • /
    • pp.479-485
    • /
    • 2006
  • The double gate(DG) MOSFET is a promising candidate to further extend the CMOS scaling and provide better control of short channel effect(SCE). DGMOSFETs, having ultra thin undoped Si channel for SCEs control, ale being validated for sub-20nm scaling. A novel analytical transport model for the subthreshold mode of DGMOSFETs is proposed in this paper. The model enables analysis of short channel effect such as the subthreshold swing(SS), the threshold voltage roil-off$({\Delta}V_{th})$ and the drain induced barrier lowering(DIBL). The proposed model includes the effects of thermionic emission and quantum tunneling of carriers through the source-drain barrier. An approximative solution of the 2D Poisson equation is used for the distribution of electric potential, and Wentzel-Kramers-Brillouin approximation is used for the tunneling probability. The new model is used to investigate the subthreshold characteristics of a double gate MOSFET having the gate length in the nanometer range $(5-20{\sim}nm)$ with ultra thin gate oxide and channel thickness. The model is verified by comparing the subthreshold swing and the threshold voltage roll-off with 2D numerical simulations. The proposed model is used to design contours for gate length, channel thickness, and gate oxide thickness.

A Study of Rayleigh Damping Effect on Dynamic Crack Propagation Analysis using MLS Difference Method (MLS 차분법을 활용한 동적 균열전파해석의 Rayleigh 감쇠영향 분석)

  • Kim, Kyeong-Hwan;Lee, Sang-Ho;Yoon, Young-Cheol
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.6
    • /
    • pp.583-590
    • /
    • 2016
  • This paper presents a dynamic crack propagation algorithm with Rayleigh damping effect based on the MLS(Moving Least Squares) Difference Method. Dynamic equilibrium equation and constitutive equation are derived by considering Rayliegh damping and governing equations are discretized by the MLS derivative approximation; the proportional damping, which has not been properly treated in the conventional strong formulations, was implemented in both the equilibrium equation and constitutive equation. Dynamic equilibrium equation including time relevant terms is integrated by the Central Difference Method and the discrete equations are simplified by lagging the velocity one step behind. A geometrical feature of crack is modeled by imposing the traction-free condition onto the nodes placed at crack surfaces and the effect of movement and addition of the nodes at every time step due to crack growth is appropriately reflected on the construction of total system. The robustness of the proposed numerical algorithm was proved by simulating single and multiple crack growth problems and the effect of proportional damping on the dynamic crack propagation analysis was effectively demonstrated.

Evaluation of the Optimal Vertical Stiffness of a Fastener Along a High-speed Ballast Track (고속철도 자갈궤도 체결구 최적 수직강성 평가)

  • Yang, Sin-Choo;Kim, Eun
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.2
    • /
    • pp.139-148
    • /
    • 2015
  • By increasing the vertical stiffness of the rail fastening system, the dynamic wheel load of the vehicle can be increased on the ballast track, though this increases the cost of track maintenance. On the other hand, the resistance acting on the wheel is decreased, which lowers the cost of the electric power to run the train. For this reason, the determination of the optimal fastener stiffness is important when attempting to minimize the economic costs associated with both track maintenance and energy to operate the train. In this study, a numerical method for evaluating the optimal vertical stiffness of the fasteners used on ballast track is presented on the basis of the process proposed by L$\acute{o}$pez-Pita et al. They used an approximation formula while calculating the dynamic wheel load. The evaluated fastener stiffness is mainly affected by the calculated dynamic wheel load. In this study, the dynamic wheel load is more precisely evaluated with an advanced vehicle-track interaction model. An appropriate range of the stiffness of the fastener applicable to the design of ballast track along domestic high-speed lines is proposed.

The Effect of Internal Row on Marine Riser Dynamics (Riser의 내부유체 흐름이 Riser 동적반응에 미치는 영향)

  • Hong, Nam-Seeg
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.1
    • /
    • pp.75-90
    • /
    • 1995
  • A mathematical model for the dynamic analysis of a riser system with the inclusion of internal flow and nonlinear effects due to large structural displacements is developed to investigate the effect of internal flow on marine riser dynamics. The riser system accounts fir the nonlinear boundary conditions and includes a steady flow inside the pipe which is modeled as an extensible or inextensible. tubular beam subject to nonlinear three dimensional hydrodynamic loads such as current or wave excitation. Galerkin's finite element approximation and time incremental operator are implemented to derive the matrix equation of equilibrium for the finite element system and the extensibility or inextensibility condition is used to reduce degree of freedom of the system and the required computational time in the case of a nonlinear model. The algorithm is implemented to develop computer programs used in several numerical applications. The investigations of the effect of infernal flow on riser vibration due to current or wave loading are performed according to the change of various parameters such as top tension, internal flow velocity, current velocity, wave period, and so on. It is found that the effect of internal flow can be controlled by the increase of top tension. However, careful consideration has to be given in the design point particularly for the long riser under the harmonic loading such as waves. And it is also found that the consideration of nonlinear effects due to large structural displacements increases the effect of internal flow on riser dynamics.

  • PDF

Design and Analsis of a high speed switching system with two priority (두개의 우선 순위를 가지는 고속 스윗칭 시스템의 설계 및 성능 분석)

  • Hong, Yo-Hun;Choe, Jin-Sik;Jeon, Mun-Seok
    • The KIPS Transactions:PartC
    • /
    • v.8C no.6
    • /
    • pp.793-805
    • /
    • 2001
  • In the recent priority system, high-priority packet will be served first and low-priority packet will be served when there isn\`t any high-priority packet in the system. By the way, even high-priority packet can be blocked by HOL (Head of Line) contention in the input queueing System. Therefore, the whole switching performance can be improved by serving low-priority packet even though high-priority packet is blocked. In this paper, we study the performance of preemptive priority in an input queueing switch for high speed switch system. The analysis of this switching system is taken into account of the influence of priority scheduling and the window scheme for head-of-line contention. We derive queue length distribution, delay and maximum throughput for the switching system based on these control schemes. Because of the service dependencies between inputs, an exact analysis of this switching system is intractable. Consequently, we provide an approximate analysis based on some independence assumption and the flow conservation rule. We use an equivalent queueing system to estimate the service capability seen by each input. In case of the preemptive priority policy without considering a window scheme, we extend the approximation technique used by Chen and Guerin [1] to obtain more accurate results. Moreover, we also propose newly a window scheme that is appropriate for the preemptive priority switching system in view of implementation and operation. It can improve the total system throughput and delay performance of low priority packets. We also analyze this window scheme using an equivalent queueing system and compare the performance results with that without the window scheme. Numerical results are compared with simulations.

  • PDF

A Finite Element Simulation of Cancellous Bone Remodeling Based on Volumetric Strain (스폰지 뼈의 Remodeling 예측을 위한 체적 변형률을 이용한 유한요소 알고리즘)

  • Kim, Young;Vanderby, Ray
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.373-384
    • /
    • 2000
  • The goal of this paper is to develop a computational method to predict cancellous bone density distributions based upon continuum levels of volumetric strain. Volumetric strain is defined as the summation of normal strains, excluding shear strains, within an elastic range of loadings. Volumetric strain at a particular location in a cancellous structure changes with changes of the boundary conditions (prescribed displacements, tractions, and pressure). This change in the volumetric strain is postulated to predict the adaptive change in the bone apparent density. This bone remodeling theory based on volumetric strain is then used with the finite element method to compute the apparent density distribution for cancellous bone in both lumbar spine and proximal femur using an iterative algorithm, considering the dead zone of strain stimuli. The apparent density distribution of cancellous bone predicted by this method has the same pattern as experimental data reported in the literature (Wolff 1892, Keller et al. 1989, Cody et al. 1992). The resulting bone apparent density distributions predict Young's modulus and strength distributions throughout cancellous bone in agreement with the literature (Keller et al. 1989, Carter and Hayes 1977). The method was convergent and sensitive to changes in boundary conditions. Therefore, the computational algorithm of the present study appears to be a useful approach to predict the apparent density distribution of cancellous bone (i.e. a numerical approximation for Wolff's Law)

  • PDF