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Abstract(J A mathematical model for the dynamic analysis of a riser system with the inclusion of
internal flow and nonlinear effects due to large structural displacements is developed to investigate
the effect of internal flow on marine riser dynamics. The riser system accounts for the nonlinear
boundary conditions and includes a steady flow inside the pipe which is modeled as an extensible
or inextensible, tubular beam subject to nonlinear three dimensional hydrodynamic loads such as
current or wave excitation. Galerkins finite element approximation and time incremental operator
are implemented io derive the matrix equation of equilibrium for the finite element system and
the extensibility or inextensibility condition is used to reduce degree of freedom of the system and
the required computational time in the case of a nonlinear model. The algorithm is implemented
to develop computer programs used in several numerical applications. The investigations of the effect
of internal flow on riser vibration due to current or wave loading are performed according to the
change of various parameters such as top tension, internal flow velocity, current velocity, wave period.
and so on. It is found that the effect of internal flow can be controlled by the increase of top
tension. However, careful consideration has to be given in the design poini, particularly for the long
riser under the harmonic loading such as waves. And it is also found that the consideration of
nonlinear effects due to large structural displacements increases the effect of internal flow on riser
dynamics.
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1. INTRODUCTION

The offshore industry is moving into deeper wa-
ters and more hostile environments. When explora-
tory drilling operations move into deeper water, the
dynamic behaviors of riser should be more carefully
considered because of the long free span. There are

many factors that influence on the behavior of a
riser, such as the offshore environment (wave and
current), the behaviors of platform {movements or
mean offsets), and the properties of the riser itself
(dimensions, weight, top tension, and internal flow).
Most of these factors have been considered in ear-
lier studies and many related papers have been pu-
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Fig. 1. Configuration of riser system with the inclusion
of internal flow.

blished. However, it was not until the publication
of a paper (Moe and Chucheepsakul, 1988) that
the effect of intermal flow on riser dynamics was
investigated. Before Moe’s investigation it was al-
ready known that the internal flow might cause a
dynamic instability or buckling of a horizontal pi-
peline supported above ground and such effect has
been considered in the design and analysis of pipe-
line. Although the dynamics of pipe conveying fluid
has been studied fairly extensively over the past 40
years, the basic techniques were recently adopted

for the dynamic analysis of a marine riser with in-
' ternally flowing fluid.

Figare 1 is a schematic diagram of a marine riser
conductor that contains internal fluid flow and is
subject to environmental forces. When the internal
fluid travels inside the curved path along the deflec-
ted riser, it experiences centrifugal and coriolis ac-
celerations due, respectively, to the curvature of the
riser and the relative motion of fluid to time depen-
dent riser motion. Those accelerations exert against
the riser which, in turn, affect the dynamic behavior
of the riser and cause riser vibrations, In addition
to this interaction problem, the riser bchavior is
also nonlinear. The nonlinearities are mainly of two
origins that result from flow-induced drag force and
from geometric nonlinearities due to large structural
deflections. The later becomes particularly ‘signifi-
cant for long risers. Such nonlinearities are due to
large deflections and slopes, three-dimensional ben-

ding, extensibility, torsion, dependency of the hyd-
rodynamic loads on the riser deformation and non-
linear boundary conditions.

The hydrodynamic loading exerted on the riser
depends on the orientation of the riser tubes with
respect to the surrounding flow and is deformation
dependent. The displacements resulting from these
nonlinear effects, in turn, modify the particle motion
of the internal fluid. The system becomes a compli-
cated interaction proboem. In summary, the primary
objectives of this study are 1) to develop a mathe-
matical model for the analysis of the riser system
with the inclusion of internal flow and the aforeme-
ntioned nonlinear effects, 2} to solve the model nu-
merically, and 3) to examine the effect of the inter-
nal flow on riser dynamics. In this study. Galerkin's
finite element approximation process is implemen-
ted. The eflect of internal flow on wave-induced
vibration, internal stresses as well as the kinematics
of riser are investigated according to the change
of internal flow or current velocity, water depth, top
tension, wave period and so on. There are only
a few papers dealing with the effect of internal flow
on marine riser dynamics. Moe (1988) was the first
who considered the forces due to the internally flo-
wing fluid as a dynamically forcing component ac-
ting on the interor wall of the riser and derived
the governing equation of motion. Before that, the
loading duc to the internal fluid was included in
the internal tension of the riser as a fluid static
force, that is, centrifugal and Coriolis acceleration
due to the internal flow were largely negligible. Wu
and Lou (1991} developed a mathematical model
for the lateral bending vibration of a marine riser
and examined the effect of internal flow and ben-
ding rigidity of the pipe on the dynamic behavior
of the niser. Their mathematical model included the
steady flow inside the pipe together with other fac-
tors such as currents or wave excitation and used
a singular perturbation technique to solve it under
the condition that the rigidity parameter, e=EI/L’,
is sufficiently small for deep water risers. It was .
found from their results that the internal flow redu-
ced the effect of top tension, but the riser motion
was not significantly affected when the top tension
of the riscr was relatively high. However, the prob-
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lem deserves further investigation since the system
sobved was lincar and the perturbation technique
was ol vabid Jor low wp tension cases. Chen (1992)
derived the governing equation with the inclusion
of dynamic force for lateral vibration by applying
Hamilion's principle. The natural {requencies and
the mode shapes were formulated and presented.
The critical buckling and signilicant velocities
which associate the internal flowing fluid with sys-
tem integrity were alse presented. In his paper. it
was concluded that the natural frequencies could
be reduced drastically by the fluid dynamic force
if the tension was insufficient for a neutrally buoy-
ant riser system, and that the dynamic force had
less influence on a positively or negatively buoyant
nser system. However, his system is also a linear
model as was that of Wu and the method employed
by him to estimate the natural frequencies and the
modal shapes appeared to be uite approximate.

For the riser analysis without considering the ef-
fect of internal flow. considerable cfforts have been
made over the years. For linear analvsis. several
methods, eg. finite difference. finite element me-
thod. or analytical method. etc.. were used Burke
(1974) studied the dynamic riser response and dis-
cussed the effects of increasing water depth on riser
design and operations. Dareing and Huang (1979)
explored the application of modal analysis for cal-
culating marine riser time-dependent stresses. Chak-
rabati and Frampron (1982) presented a review on
riser analysis techniques.

With increasing water depth. the nonlinear beha-
viors of the riser become more prominent as men-
tioned above. The equations for large amplitude th-
rec-dimensional inextensional motions of beams
were derived by Nordgren (1974), with the assump-
tion of constant principal moments of inertia, negli-
gible rotatory inertia. and the uncoupled torsional
motion. Bruce and Michael (1977) described a ma-
thematical model and solution technique for a sys-
tem with coupled dynamic axial and lateral respon-
ses of a riser column. Fellipa and Chung (1981)
implemented a finite element method for solving
nonlinear static equilibrium configurations of deep
water risers. Also, a transicnt analysis was developed
by Chung (1981) for the determination of nonlincar

motion by considering nonlinear static configuration
as an 1nitial condition for dvnamic analvsis. Garrett
{1982) presented a three-dimensional finite clement
madel of an inextensible elastic rod with equal pri-
ncipal stitfness. The model permitted large deflec-
tions and finite rotations and accountad for tension
variation along its length. Konuk (1982) provided
a general foundation for developing rigorous for-
mulation of problems involving marine pipelines
with twist. Safai (1983) developed a method for au-
tomatically updating the structural geometry during
the dvnamic analysis for a system in which the
bending, axial and torsional vibrations are uncoup-
led. Kim and Trantafyilou (1984} studied the nonli-
near dynamics of long, slender cylinders assuming
moderately large deformations and no longitudinal
excitation modes. McNamara and Lane (1984) pre-
sented an efficient method based on the finite ele-
ment approach using convected coordinates for ar-
bitrary large rotations. Huang and Chucheepsakul
(1985) introduced a method of static analysis for
risers experiencing large displacements, The method
represented a modified functional involving muttip-
liers to account for the are length being unvaried
with neglected tension, and used the exact curvature
of radius in their formulation. Kokarakis and Ber-
nitsas (1985) formulated the problem of static three-
dimensional nonlinear. large deformation response
of a riser within small strain theory and then solved
it numerically by using an incremental finite ele-
ment algorithm, which involved a prediction-correc-
tion scheme. Later, they (Bernitsas and Kokarakis.
1987) employed a previously formulated static mo-
del for the dynamic analysis of riser and developed
an efficient algorithm for its numerical solution. O
Brien and McNamara (1988) developed a technique
based on finite clement method by the separation
of the rigid body motions from deformations of ele-
ment under the condition of finite rotations.

2. GOVERNING EQUATION

2.1 Eguations of the Pipe

The main aspects of the curved geometry of the
system are depicted in Figure 2. Three coordinates
systems are defined. namely
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Fig. 2. Position vector and principal direction at a point
on the giser centerline.

- (1. 7. k), an orthonormal global inertial system
of coordinates with origin at the lower ball joint
of the rser.

< (n. b. ). an orthonormal triad passing through
the centroid of the cross section of the deformed
configuration.

. (N. B. 7). an nonorthonormal triad passing th-
rough the centroid of the cross section of the defor-
med configuration.

where 7 indicates a unit vector and hereafter
boldface represents general vectors. Since we as-
sume no shear deformation. the third nonorthonor-
mal triad becomes consistent with the second or-
thonormal triad. The initial undeformed configura-
tion of the riser is vertically straight. i.e. its direction
accords with k. The deformed space curve is speci-
fied by giving its position vector r from the origin
of space fixed system (i. j. k) to a point on the
deformed riser centerline (see Fig. 2). as a function
of deformed are length s, At any point on the dcfo-
rmed curve the unit tangent vector 7. the unit nor-
mal veetor . and the unit binomial vector b are
defined by

tev. n=r/ b=1Xn n

where prime denotes differentiation with respect 1
v, and the curvature k. from the well known results
about the differential geometry of curves in space
(Love. A, 1927), is given by

K\ e rff. r” (]r s r/ . r/ll {2)

where "+ " denotes inner product of vectors (dot
product).

The total bending moment. as shown in Fig. 2
acts in the binomial direction and is proportional
to the bending rigidity of the cross section El and
the space curve will be identified with the central
axis of the riser in the deformed state, with the
position vector, as shown in Fig. 2. represented as

follows.

r=r,F sk =xi4xg+ s+ xok (3)

where 1, is the deformation vector at any point on
the riser in the undeformed state.

In the classical theory of rods, the internal state
of stress at a point on the rod is fully characterized
by the resultant force F and the couple moment
M acting on the central axis. Conservation of linear
momentum and angular momentum leads to the
following vector equation of motion.

—(EIY" + [(T.—EBAH' ) + (¢ Xm) +(Hr' X¢"y
_(r'X[JJ{E})“FFF T F|=m,'l" (4)

where Fy and Fg are the internal fluid force and
the applied external hydrodynamic force per unit
length. respectively (see Fig. 2) and m, is the mass
of the riser per unit length, and dot denotes differe-
ntiation with respect to time. m is the distributed
couple vector induced by the asymmetric flow due
to vortex shedding. It is usually negligible if we ig-
nore the coupling of bending and torsion is weak.
The mass moment of inertia [J.} is given by

I 0 0
= ¢ In 0 (S)
(} 0 }33

and ® is the angular acceleration and is obtained
from the time differentiation of the angular velocity.
The angular velocity ® is computed using the app-
ropriate transformation matrices that carry the ini-
tial system (i. j. k) to the final triad n, b. 1. The
effective tension. T, is defined by

T.=1F ()

Alternatively the effective riser tension, which is the
tangential component of the internal force. may be
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givent approximately by {Dareing. 1976)
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where T=oactual tension in the riser, S, ordinaw
of the free surface of water. S..=ordinate of the
free surface of mud. p, and p, are the densities
of water and mud respectively. Iy and D;=external
and internal diameter ol the riser and z 1s measure
from the lower ball joini, ic. z=s+x;.

The actual tension T also satisties the consitutive
relation:

T=EAg, (8)

where EA is the stretching rigidity and e is the
strain of the rser centerline in the tangential direc-
tion defined as

L o

where § 15 related w© s by

B TRy T (10)
For an incxwensible riser. £=0 and the deformed
arclength s, becomes the undeformed arclength s
from Eq. (10). However. Eqg. (7) and Eg. (8) have
to be kept to compute & for the extensible riser.
H represents torsional couple prescribed at end.

2.2 Force due to Internal Flow

The force acting on the internal wall of the riser
is derived by using the concept of Hamilton's prin-
ciple. No small-scale motions such as trbulence
or secondary flow are assumed to be absent. And
also, the plug-flow model with no radial variation
of velocity is utilized as a fluid model for the inter-
nal flow.

Hamilton's principle in our problem states that

5 [F @y d=o (1)
1"

where. 7, and V, are the kinetic and potential energies

associated with the rube. and 7; and V; are the corres-

ponding guantities for the fluid. Using the velocity of

the internal fluid obtained from neglecting the stret-
ching strain. we have kinetic energy of the enclosed
volume of fluid.

[ 2 S
£ 2 | Vie A *Vré‘f ] *"\'QL i v(@—' ?
; Rl o o o
X5 3
{('&"’**‘V(Q‘; —Jr]}] s, (12}
ot o8

and the potential energy of the fluid is zero because
the fluid is assumed to be incompressible, ic.

V=10 (13

Performing the variation after the substitution of
Eq. (12) and (13) into (11). we obtain the following
integration

J’j T Vi 8% Vi )+ G+ Vi)
IJ A
3 Vﬁ:\a‘];) + ()21 =+ V[X'; -+ i }(6).( 3 V|ﬁ’(’3)}
+8T,— 8V, Jds, dr (14

Since &y, d (ax,). 6.\";:—“@; ay) =1 2. 3

ar oY

cach terms may be integrated by parts so as to elimi-
nate the various derivatives of &, When this is done,
there 1s obiained

[ N . . R
{ ) j '|[ Z (X +2mNVox -+ m Ve By, + 87— 61/,.1
LAL A

dsydt =0 (15)

From the concept of the resulting Euvler-Lagrange
cquations, we can recognize that the expression in
round bracket represents the forcing components
of a fluid particle inside the pipe due to internal
flow. Thus, the fluid torce acting on the internal
wall of the pipe can be written in vector form

Fi= —mfi+ 2Vir + Vi) (16}

The first erm on the right represents the inertia
force associated with the riser acceleration. The se-
cond term is the inertia force associated with the
Corlolis acceleration which arise because the fluid
is flowing with velocity V; relative to the riser. while
the riser itself has an angular velocity at any point
along its length. The last term represents the inertia
force associated with the change in direction of the
tlow velocity, owing to the curvature of the riser.

2.3 Hydrodynamic Forces
The relative motion between the pipe and the



S

Nam Sceg Hong

Pipe velocity: Vo =11

Fluid velocity (current + waves): Vg

Relative velocity: Vg =1 — V§
Pipe tangent vector: 1

Tangential component of Va:

Normal component of Vg:

Ver = (Vr-1)!
Van = Vr - Vpr

ve”
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Fig. 3. Velocity vectors acting on a segment of pipe and definition of the relative velocity components.

surrounding fluid produces hydrodynamic force co-
mposed of inertia, drag. and frictional forces. The
resultant total force distribution Fy along riser le-
ngth is decomposed into a normal force component.
Fn. and a tangential component, Fr. To perform
this decomposition, the relative velocity and accele-
ration is resolved into components perpendicular
and parallel to the deformed riser axis as shown
in Figure 3. The relative velocity vector between
the pipe and the surrounding fluid is given by

Vnﬁ"p_Vc_Vw:i'“‘V(:*Vw (17)

where V,=pipe velocity vector, Ve=steady current
velocity vector, and Vy—=time dependent wave velo-
city vector. It should be noted that current and wave
velocity are functions of vertical position. Figure 3
depicts the velocity vectors acting on a segment of
pipe and explains the definition of the relative velo-
city components. Noting that the current velocity
is independent of time, the relative acceleration of
the pipe with respect to the fluid is given by

\-,/’R:\‘JP—\./’“:{-»V“ (18)

and its tangential and normal components are given
by

VRT:(VR‘;); and Ven=Ve— Vir (19

Also. we need the tangential and normal compone-
nts of the wave-induced water particle acceleration
o calculate wave induced force and they are given
by

Vier = (Va1 and Vn= Ve — Vo {20)

In the present case, the tangential force compo-

nent by skin friction is neglected, and only the nor-
mal force component is retained by

FEA"’MFN = — DW(TTDnz/4)(:A “).RN
+ pu(nDy4) V= puDyCl Van| Ven/2 (21)

where |Ven! = [V + Vi + Vi Y2 and Ci=ad-
ded mass coefficient, Cp=drag coefficient.

The first term of Eq. (21} is an inertia term repre-
senting the force that is required to accelerate the
pipe with respect to the surrounding water. The se-
cond term is the wave induced force. This force
is produced by the local pressure gradient that ac-
companies the normal component of water particle
acceleration. The last term is the drag force that
is proportional to the square of the normal velocity
component and is formed by the separation of flow.

2.4 Equations of Motion and Boundary Condi-
tions

2.4.1 Nonlinear Governing Equations

Eq. (4) is the bending equations of motion of
the pipe. In this equation, H is the time dependent
torque due fo varation of the relative orientation
of the supporting platform and imperfections of the
tensioning system. and m is the distributed couple
vector induced by the asymmetry of the flow due
to vortex shedding, But m is usually negligible, lea-
ding to the uncoupling of the bending and torsion,
Furthermore, rotatory inertia term can be neglected
because the riser response is usually dominated by
fow frequency motion. Thus, one deduces that H
is independent of the pipe length, that is, it has
constant value along the riser arclength. Eq. (4) then
becomes
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—(EIY+UT ~Fle'y ) * HOO Y'Y +F, + F,

ST {(22)

Substituting Egs. (16} and (2}) into the above equa-

fon.

mx+ (EIFY (T, EleS '] — H(r' X1y
= —mfF+2Vir + Vi)
—purDAACs Vent p DAV
= pDoCo! Vin| Vn/2 (23)

Manipulating and letting A,=nD,*/4.

| o R
q- - -Z—pk'Cl.-)Dvl Venl Vs T p ALl +Ca)Vy

+ AL BN — 0 A1+ Calle- Vark (24)

and m,=m,+m+ p.ALCs we have nonlinear gover-
ning equations (N.GE.'s)

mi+2mN +mN Y+ (ELFY
—[(T.—EIW T —H(r X¢'Y =¢q (25)

Ustilization of the kinematic constraint on the unit
tangent vector. [t|=Ir|=1. leads to the reduction
of number of the unknowns. The following kinema-
tic relations are produced from this constraint

=) = 1 +e) (26)

s =xd0)+ f ' X'y ds, 7

Consequently. the vertical deflections can be com-
puted in terms of lateral one. The kinematic rela-
tions are used as predictors to remove the vertical
unknowns from the governing equation. They are
used again as correctors, after the solution of the
reduced equations has been obtained. This will re-
duce the iteration or improve convergence.

2.4.2 Boundary Conditions

For the completion of the mathematcal model.
the boundary conditions have to be specitied. The
boundary conditions for the dynamic model of riser
are usually time dependent because of the motions
of the supporting platform. The riser support can
be modeled by substituting the linear transtational
or rotational springs providing the restoring boun-
dary forces and moments. Typically the displace-
ment or the force vector and the unit tangent vector.
or the bending or torsional moment has to be spe-

M,
X}T A
TTR TF
T A /'?‘"’Mln
Flw
MZu GF'ZU
F; >»M,;
Fl‘ Fj
M, &
Ms

X,

Fig. 4. Free body diagram of the equilibrium of forces
and moments for the differential element at the
top of the riser.

cified at each nser end. Figure 4 describes the free
body diagram abour the equilibrium of forces for
the differential element at the top of the riser. From
the free body diagram, equilibrium of forces at the

top vields:
Fo.= (TEX-i ~ Kx, (28)
Fs,=(TEY+ — Ksxa, (29)
Fs=(TF¥-k — Ky, + TTR (30)
where
TFpenD’(S, 204 pagnD/ (S, —2)/4 (31)

The subscript v indicates the upper end of the riser,
TIR is the tension applied at top of the riser by
the tensioning system and K, K. K; are spring con-
stanis supplied by the restoning boundary force.
Equations (2931} show that the fluidic tension at
the top of the riser always acts in the tangential
direction. Both TF and its direction are deformation
dependent. Further more. the internal force F is
also deformation dependent. The nonlinearity of
these boundary conditions disappear in lincar mo-
del because the three direction cosines in Eqs. (29}
(31) become 0. 0. and | respectively.

3. NUMERICAL METHOD

This paper formulates the numerical model of
governing equations and boundary conditions using



82 Nam Sceg Hong

finite element method. Variational statement for the
boundary value problem is introduced. that s, the
weak form of governing equation is derived. Seque-
atially. the incremental operator is applied to the
weak form in order to derive the incremental equi-
librium equation. and then Galerkin's decomposi-
tion method is performed to construct approxima-
fions to the solutions of the problem. Finally incor-
poration of the usual cubic shape functions yields
the matrix dynamic equilibrium cquations construc-
ted in terms of the unknown deformations at nodal

points.

3.1 Incremental Weak Form
The weak form of the mathematical model 15 de-
rived in a usual manner and given as follows

Jh:Tm,i:- rds: + J‘ :[Zm,\f;i" “Tels;— f :?m NEF Tds, +

ﬁ T:(Elr”)?’ds, + f T~ B dsit

ﬁ CHEEXE) Y dsi=1 o mVy b E) T
~xME [ (32)

Finite approximations on the above weak form yields
the matrix equilibrium equation. This is a usual proce-
dure of the finite element approximation. However. the
application of this procedure may show inaccuracy in
solution or inefficiency in convergence resulted from
so many iteration for the nonlinear terms in the cqua-
tion, And therefore, the application of incremental ope-
rator on the weak form of governing equation (Oden,
LT, 1972) is required for the successful iteration and
the incremental matrix equilibrium equation can be
obtained from the incremental weak form.

Now, applying incremental operator A on Eq. (32)
with independent variable r gives the incremental weak
forms:

1y o 1y . 3 R —
f wLAE Y dy %J 2mN\AY -y ds.—J’ mN AT dyy
[} (53 )
fnr - it _
F J ) (I:lAr")ﬂ"ci\'ﬁJ’“ {A(T,— El&®y +(T.— El)Ar}Hr ds)

(i _ —
‘ J“ H(AF X"+ 1 X Ar')-Tds, = | - m VA + AF|rl"

— ", -
+ L"!Ar"'r'\'/}"' Eﬁ' Aq-rd_s‘\ (33)

i which
A(T, Elx)=AT, -EIA(x) (34
Combine Egs. (1)L (2) and (6) into (34). we obtain

AT~ LIA()= A(F r)—EJA(X - t"y=AF-r + F-Ar
'''' 2EIAr - (35)

Substitute the result of (35} into (33). we finally get

J" I]I 'm,A'r' ‘reds, + ﬁ:lilm /VEA;" iy, - J:Jm VEAY s,
+ _{ ”( EIAY) s |ﬁ:l(Tc —EIk)HAF 1ds)

+ f (- AN i~ f VOB AP,

+ f( /:'H(Ar' X¥')vds, + f :jH(r' Xe')r ds
={—m¥V; Ar + AF}-rl)"+ EIAr - £ ¥

+["’Aq-?dsg - J CAFEXY s (36)
[H] 4

This is the incremental weak form of the poverning
equation and the quantities in front of integrals are
considered constants for each clement so that those

terms may be factored out of the integrals.

3.2 Matrix Dynamic Fquilibrium Equation

The construction of a finite element approximation
of the problem. such as given in (36), is based on Ga-
lerkin’s decomposition method. Here, we replace (36)
by a finite dimensional problem to find the approxi-
mate solution vector r,. The nodat values of the appro-
ximate sclution are unknown functions of time and
consist of not only the deflections at the nodes. but
also the rotations. In other words. alter constructing
interpolation functions on a suitable mesh, we take the
approximate solution to be of the form

T "Mh? t .\'1:; t (Im"‘S)!:’
1

and XS 1= z .‘sz(i)N,(Si). }':1. 2,

=1

(37

Lad

where xu. X and xp, x4 represent the deflections and
the rotations at node, and N, is the basis or interpola-
tion function,

Having selected the basis functions, the incremental
form of an approximate solution and the test function
can be written similarly
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1
A‘ﬂ:h!- ’}“ Z Axn{[)]\;:{_\',)

4

s N7 XAONAs) (38)
i1

The substiution of (38) into (36) introduces the series

form of the incremental weak form. Manipulating the

series form and wrting them in a matrix form, we

obtain the following matrix equilibrium equation:

[MIAYT+ LCHAxE [K]{Ax)={Af} + |AF} 39

where.

[(M;] (o] [0]
iMl=| [0] M) [0]| [C)=
Lol [0l [M]

[c,J [0] [o2
(o] Lyl (o]
fo] (o3 [o]

I:Kiu + K351+ K31;+K4HU+KSI ]1/']
i:k’} = LKJHU _%I&S:i{,t +K(w”1;+K7:iu_]
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In Eq. (39). the matrix [M] is a consistent mass
matrix which is identical to the one derived for
small deformation models and includes the added
mass of the riser and the mass of the drilling fluid.
(€7 is an anti-symmetric matrix due to the Coriolis
force resulting from the internal flow. Furthermore
(K] is the time and deformation dependent stiffness

mairix and consists of 8 components: [K,] is due
to the centritugal force trom the internally tlowing
fluid, [K+J is the bending stiffness matrix, and LA+
is the geometric stiffness matrix which implicates
the nonlinear coupling between axial tension and
bending. The previous three matrices are symmctric,
while [K;l. [Ks], [K.] and [K;] are non-symmetric,
full matrixes, [Ky]. [Ks] arc duc to the variable
longitudinal tension and [K:], [K;] are due to the
torque H. Finally, [C.] is the centrifugal force com-
ponent at the both end of element. As forcing com-
ponents. {f} is the deformation dependent equivalent
nodal force vector and {F} is the internal force and
moment vector.

3.3 Predictor-Corrector Scheme

The utilization of the kinematic constraint on
unit tangent vector makes it feasible to represent
the vertical degrees of freedom in terms of the late-
ral ones. This does lead to the reduction of the
to 8 and
remove the possibility of the divergence in solutions
due to the iteration of highly nonlinear terms in
the vertical degrees of freedom. Moreover, it can
be mmplemented as an another algorithm scheme
for the iteration due to nonlinear terms. For the
development of an algorithm, so called predictor-
corrector scheme, the derivation of the incremental
form of the extensibility condition is necessary be-
cause the equations of equilibrium for a finite ele-
ment system in motion to be solved is of the incre-
mental form.

degrees of freedom per element from 12

Usmg the kmematlc consiramt on unit tangent

wing re]atlonshap:
o+ (e = (41)

Applying the incremental operator A on above
equation. we obtain
Axy'= —(x/Ax x5 Ax Yo H 1T +g)) !
+Ag(l+g) ° {42)

also, we have
TL.: Fii=F-r'= Fl,\‘|’+ {‘}.\':"# F‘,(.\'r," + 1/ (] + S,) {43)

Applying the incremental operator on Eq. (43), we
get
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AT. —AF = AFw ARG LA+ g)
s FgA\W’ + F;A\‘)’ e F;A\';' F_‘.AC,( 1+ 8,) 2
(4

Also. we have

T.=EAg, + p.AgS, —S5S—x2)— p..AgdS, —S—x3)
(43)

Applying A again on Eq. (45). we obtain
AT. = EAAg -~ Axg(poAs— pul\y) (46)

Eliminating AT. from Egs. (44) and (46). we com-
pute Ag,

Ae, =

{AFIXI’ + AF}/\’; + AF}(X}\’ + A1+ eN+ F]Axl’ +
FgA’C:r + FgA\‘;' + ijg(pqu o pmA;)}/
{EA+F«(1+g) % 47

Substituting Eq. (47) into Eq. (42) and solving for
Ax:. we obtain

F: O x/Ax/+x'Ax
EA(l+e) L x'+1/(1+e)
1
+W~"“‘7,"—

EA(l+ey+F,
+ AFxy + /(14 8)) +F Ax) + F2Axy’

+ A’ng(p,,Ao“ pmAr}}] (48)

Ar;':(1+

{AF],Y|!+AF}\CJI

In addition 1o Eq. (48), we also have
51
AX}ZJF AX;' (Ji&’l

' ={l=x"=x2 = (l +eg)

X=X 3(0) + J .\'_;' dSi (49)

&

As stated carlier. the vertical degrees of freedom can
be computed in terms of the lateral ones. For each
load increment the kinematic relations. Egs. (48) and
(49), are used as predictors to remove the vertical deg-
rees of freedom from global matrix equation of equilib-
rium. They are used again as correctors. afler the solu-
ton of the reduced system of equations has been
achieved. During prediction phase xi. xi'. Axi. Axy’ are
computed vsing Eqgs. (48) and (49). 1n addition. during
the prediction phase equation (39) are used to compuic
XL X Av AxyLxe vy, Avs Axy. During the correction
phase vi xds Ave Axy are recomputed using Eqs. (48)-

Assume Riser Initial Position
alt=4_

Apply Imtial Veloeny V
and Caleulate Load Vector g(V})

Calculate [M], {C], [K], [{}
and Element length

Caleulate Ax), Axy, Aty, Al‘g’
From Eq.(31.5!)
'

Calculate ¥3, x5, Axj, Axf
From Extensibility Condition

] q’rm? vat

Use X1, ¥}, xx, ¥, &, 861, Axg, Ax)
From Time Step t

A

Caloulate Aq )

fCalcuEaEn F using Local Eqailibtium l

| Calentate 1o = F-} and €, = ?,fzaA"{
|

¥
Caleulale [M], [C]. (K]. {F} Update the values o
and Elemnent length Xy, %5, 5, 1

Calculate Ar, Ax|, Axy, Ar;
From Eq.{3.51)

l

Conrcet X3, X5, Axy, Ar}
using Fxtensibility Condition

Convergence Check
YES AU NO

Fig. 5. Solution algorithm emploving predictor-corrector
Scheme.

(49) and all deformation dependent matrices, the equi-
valent nodal forces. the boundary conditions and the
lengths of elements are corrected. Further xi. x/'. Axy,
Ax!. x-. xy. Axs. Axy are recomputed uvsing Eq. (39).
This predictor-corrector scheme is repeated until conve-
rgence is achieved for each load increment. The algori-
thm is summarized in Figure 5.

4. THE INVESTINGATION OF THE
EFFECT OF INTERNAL FLOW
ON RISER DYNAMICS

4.1 Comparison between the Effects of Centrifugal
and Coriolis Forces

As stated in introduction, internal flow. as it tra-
vels along the curved path in the riser, generates
centrifugal and Coriolis force. These dynamic forces
exerted against the riser. in turn, affect the dynamic
behavior of a riser. The centrifugal force reduces
the stiffness of a riser whereas the coriolis force
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Fig. 6. The Effect of centrifugal force on displacement en-
velope of rser at an arbitrary time. (TR= 1.2, w=23.
86 kKN/m. Hw=6. m. Tw=35 sec).

causes the dynamic coupling with other forces.
Their effects on riser behavior are separately exami-
ned here. Fig. 6 presents the displacement shapes
of a riser at four different arbitrarily selected times
to Hlustrate how the deflected shape changes with
the inclusion of the centrifugal force only. In com-
parison with the no internal flow situation. the ma-
gnitude of the displacement envelopes are changed
but the shapes remain undistorted. In other words.
the ratio of magnification remains constant along
the riser. It should be noted here, since centrifugal
torce reduces the stiffness of the riser, the amplitude
of the riser displacement also increases with increa-
sing centrifugal force. However, a phase diffrence
is introduced into the system. Therefore. the ampli-
tude amplification will not be manifested at every
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g. 7. The Effect of coriolis force on displacement enve-
lope of riser at an arbitrary time. (TR=12, w=13.86
KN/m, Hw=6.1 m, Tw=3 sec).

instance.

Unlike the effect of centrifugal force, the Coriolis
force alters the displacement shape as shown in
Fig. 7. As can be seen. the magnitudes of displace-
ment change at upper and lower part of riser are
different. This can be understood from the fact that
the Coriolis force term is composed of a mixed
derivative with respect to time and space or the
Coriolis matrix in matrix equilibrium equation is
skew symmetric. The Coriolis force alternately cou-
ples with inertia and stiffness according to the pas-
sage of tme. In summary, the centrifugal force.
which depends only on the curvature of riser defle-
ction, does not alter the displacement shape. while
the Coriolis force. which has a mixed derivative
of time and space. distorts the displacement shape.
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4.2 Consideration of Geometric Nonlinearity

The nonlicanitics in riser dynamic analysis are
mainly of two origins that result from the flow in-
duced drag force and from geometric nonlinearities
due to large structural deflectons. In particular, the
latter becomes significant for long riser. To examine
the effects of geometric nonlinearity, Maximum dis-
placements of riser with the inclusion of internal
flow may be computed by the program for different
riser lengths or water depths. But, there is no readily
available information on sclecting riscr parameters
for every water depth and on determining top ten-
sion value to avoid riser failure due to excessive
stress, A conservative approach is taken here to let
the top tenston be maintained a constant value re-
gardless of water depth and then. let the eflective
weight be adjusted to avoid negative tension over
the riser length for different water depths. In prac-
tice, this effective weight can be adjusted by altering
the buovancy along the riser.

With this hypothetical riser, the maximum displa-
cements of the riser are computed for water depth
up to 1500 m using both linear and nonlinear mo-
dels. The ratios of these maximum displacements
10 that of the case without internal flow are plotied
in Figure 8 As shown in the figure, this maximum
displacement ratio basically increases with depth to
a certain peak point beyond which it decreases with
depth and gradually approaches a constant as the
effect of the riser stiffness also diminishes with de-
pth. The effect due to nonlinear geometry can also
be examined from this figure. As can be seen, in
shallow water the effect of geometric nonlinearity
is actually to reduce the displacement ratio. Howe-
ver, as the water becomes deeper than certain criti-
cal valuc, the displacement ratio becomes larger
with the consideration of the geometrical nonliea-
rity. The differences from the linear model and the
nonlinear model clearly are not negligible and they
become larger for higher internal flow velocity. For
the case of increased fop tension such as shown
in Figure 9. the displacement ratio is also found
to follow the same trend but the differences between
the linear and nonliner models become smaller. In
summary. the cffect of geometrical nonlineanty be-
comes incerasingly more important for risers in
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Fig. 8. Comparison between linear and nonlinear model
about the effect of internal flow according to the
change of water depth and internal flow velocity.
top tension=650 kN, TR=11. effective weight=
top tension(TR Xriser length).

deeper water. particularly if the top tension is low
and the internal flow velocity is high. Under such
conditions, linear model underestimates the displa-
cement as compared to nonlinear model. A linear
model can be used if top tension is high which
generally restricts its application to shallow water.

4.3 Riser Vibrations due to Wave or Current Loa-
ding

Fist, the time simulations of tip displacements
are calculated for the condition of the combined
uniform current and wave system at a right angle
to each other. The results are shown in Figure 10.
Figure 10 shows the time dependent trajectory of
riser tip displacement. As expected, the coupled res-
ponse in both directions results in the narrowing
pattern in the current direction but maintains a
modulated oscillation in the wave direction. The
presence of internal flow causes a slight decrease
in current direction displacement but a more pro-
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nounced increases in wave direction displacement.
Figure 11 presents the effect of internal flow on
the maximum displacement as a function of current
strength for different riser tensions and internal ve-
locities. In this case, the centrifugal force dominates
the Coriolis effect and the effect of internal flow
becomes larger with increasing current velocity as
a result of the increased riser deformation. This ef-
fect 1s further magnified for risers with low tension
as seen in this figure. in other words, in order to
reduce the centrifugal torce due to internal flow one
must increase either the top tension or the buoya-
ncy. Figure 12 plots the maximum displacement in
the wave direction as a function of wave frequency
for different top tensions and internal flow veloci-
ties. Displacement due to wave loading has resona-
nce peaks of which the positions are lightly shifted
due 10 the presence of internal flow. The effect of
internal flow on tip displacement is not significant
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Fig. 10. The cffect of intemal flow on the time-dependent
trajectory at the tp of 152 m riser. {current velo-
city U=04 m/sec. wave period Tw=20 sec. wave
height Hw=6.1 m. top tension=2350 kN, effective
weight w=2.3 kN/m. semi-restrained top condi-
tion. current and wave cross with an right angle).

if the riser is restrained at the top by a large mass
with strong damping and stff spring

4.4 Effects on Internal Stresses and Displacement
Fields

It can be seen from Fig, 13 that the maximum
effect on displacement occurs at the locations where
the slopes are zero and the maximum effect on
riser rotation occurs at the boitom. The effects on
bending moment are the same as on displacement
but the cftects on shear force arc not as cvidenced
in Figure 14. For the system under harmonic loa-
ding such as wave, the maximum effect on displa-
cement is found at the locations where the slope
is zero, while the maximum effect on rotation oc-
curs not only at the bottom but also at the inflec-
ton points. Furthermore, the maximum effect on
shear force occurs at the inflection points.
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5. CONCLUSIONS

A mathematical model for the analysis of niser
systems with the inclusion of internal flow is deve-
loped together with numerical solutions and com-
puter programs. From the results of sample compu-
tations. the effects of internal flow on riser dynamics
are examined. The following conclusions are drawn:

1) There are two dynamic forces due to the mo-
ticn of internal fluid, that is, centrifugal and Corio-
lis force. The centrifugal force, which depends only
en the curvature of riser deflection. does not alter
disptacement shape where as the Coriolis force,
which is a term with mixed derivative of time and
space. distorts the displacement shape.

2) The effect of geometrical nonlinearity becomes
increasingly more impertant for risers in deeper wa-
ter, particularly if the top tension is low and the
internal flow velocity is high. Under such condi-
tions, the linear model understimates the displace-
ment as compared to the nonlinear model. A linear
model can be used if top tension is high which
generally restricts its application to shallow water.

3) The effect of internal flow on tip displacement
is not significant if the rser is restrained at the
top by a large mass with strong damping and a
stiff spring.

4) The effect of internal flow on the displacement
of a riser in a current field is dominated by centri-
fugal force. On the other band, for riser under pure
wave loading the internal flow cffect is dominated
by Coriolis force. Also, centrifugal force always inc-
reases the displacement which is undesirable, but
Coriolis force could increase or reduce displacement
depending on the modes of resonant peaks.

5) The effects of internal flow on maximum disp-
lacement and rotation become more important
when current velocity and/or internal flow velocity
increase, and when top tension decreases. In parti-
cular, the maximum effect on displacement occurs
at the locations where the slopes are zero and the
maximum effect on riser rotation occurs at the bot-
tom. The effects on bending moment are the same
as on displacement but the effects on shear lorce
are not in a certain rule.

In addition 1o the conclusions made in this study.

it should be noted that the effects of Coriolis force
could be overestimated because downward internal
flow is not included in the construction of a mathe-
matical model even though the downward flow te-
nds to reduce Coriolis force.
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