• Title/Summary/Keyword: Nuclear Hydrogen

Search Result 636, Processing Time 0.031 seconds

Pharmacophore Identification for Peroxisome Proliferator-Activated Receptor Gamma Agonists

  • Sohn, Young-Sik;Lee, Yu-No;Park, Chan-In;Hwang, S-Wan;Kim, Song-Mi;Baek, A-Young;Son, Min-Ky;Suh, Jung-Keun;Kim, Hyong-Ha;Lee, Keun-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.201-207
    • /
    • 2011
  • Peroxisome proliferator-activated receptors (PPARs) are members of nuclear receptors and their activation induces regulation of fatty acid storage and glucose metabolism. Therefore, the $PPAR\gamma$ is a major target for the treatment of type 2 diabetes mellitus. In order to generate pharmacophore model, 1080 known agonists database was constructed and a training set was selected. The Hypo7, selected from 10 hypotheses, contains four features: three hydrogen-bond acceptors (HBA) and one general hydrophobic (HY). This pharmacophore model was validated by using 862 test set compounds with a correlation coefficient of 0.903 between actual and estimated activity. Secondly, CatScramble method was used to verify the model. Hence, the validated Hypo7 was utilized for searching new lead compounds over 238,819 and 54,620 chemical structures in NCI and Maybridge database, respectively. Then the leads were selected by screening based on the pharmacophore model, predictive activity, and Lipinski's rules. Candidates were obtained and subsequently the binding affinities to $PPAR\gamma$ were investigated by the molecular docking simulations. Finally the best two compounds were presented and would be useful to treat type 2 diabetes.

A Study on the Effect of Liriopis tuber water extract on Hydrogen Peroxide-stimulated C6 Astrocyte Cells (과산화수소 자극으로 활성화된 C6 성상교세포에 대한 맥문동추출물의 조절 효능 연구)

  • Park, Ki Ho;Kang, Seok Yong;Jung, Hyo Won;Park, Yong-Ki
    • The Korea Journal of Herbology
    • /
    • v.35 no.4
    • /
    • pp.9-16
    • /
    • 2020
  • Objective : To identify the effects of the water extract of Liriope platyphylla tuber (Liriopis tuber, LT) on the activation of astocytes, we investigated the regulatory effects of LT extract on H2O2-induced oxidative damage in C6 rat astrocytes. Methods : LT extract was extracted with boiling water. C6 cell line were treated with LT extract at 1, 2, and 3 mg/㎖ or without for 30 min and then stimulated with H2O2 at 5 ㎛ for 24 hr. The cell viability was measured by MTT assay. The expression of glial fibrillary acidic protein (GFAP), signal transducer and activator of transcription 3 (STAT3), phospho-STAT3 (pSTAT3), cyclooxygenase (COX-2), Nuclear factor-κB (NF-κB), superoxide dismutase 2 (SOD2), heme oxygenase-1 (HO-1), catalase, Akt, phospho-Akt (p-Akt) phosphoinositide 3-kinases (PI3K), and protein kinase C alpha (PKCα) proteins were determined by Western blot, respectively. GFAP expression was also observed with immunocytochemistry under a fluorescence microscope. Results : LT extract induced cell proliferation in H2O2-stimulated C6 cells. LT extract significantly inhibited the expression of GFAP, NF-κB and COX-2 and increased the expression of HO-1 and the phosphorylation of STAT3 in H2O2-stimulated C6 cells. LT extract also significantly increased the phosphorylation of Akt and decreased the expression of PKCα in a dose-dependent manner in H2O2-stimulated C6 cells. Conclusions : LT extract can regulate H2O2-induced activation of astrocytes through inhibiting the expression of NF-κB, COX-2 and regulating Akt / HO-1, STAT3 or PKCα signaling pathway.

Antioxidant Effect of Paeonia Japonica Extracts on Mouse Embryonic Fibroblast Cells (백작약 에탄올 추출물이 mouse embryonic fibroblast cells에 미치는 항산화 효과)

  • Yoon, Hee-Jung;Go, Eun-Bi;Choi, Min-Sun;Kim, Dong-Il;Sung, Jung-Suk
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.25 no.2
    • /
    • pp.78-88
    • /
    • 2012
  • Objectives: Paeonia japonica has been widely used for gynecopathy and analgesic effects in Korean Traditional Medicine. The aim of the present study is to determine the antioxidant effect of Paeonia japonica extracts(PJE) by using mouse embryonic fibroblast cells(MEF cells). Methods: We evaluated Radical Scavenging Activity of PJE by the DPPH assay. Protective effect of the PJE on the hydrogen peroxide($H_2O_2$) induced oxidative damage of MEF cells was analyzed by the MTT assay. The Morphological changes of MEF cells induced by P. japonica, $H_2O_2$ and P. japonica+$H_2O_2$ was evaluated by DAPI staining. And effect of PJE on the rate of apoptosis in MEF cells was measured using flow cytometry with Annexin V-FITC and PI double staining. Results: We observed that PJE contain significant DPPH radical scavenging activity. Cell viability of oxidative damaged cells treated with various concentrations of $H_2O_2$ was increased by treatment with PJE. Flow cytometric analysis of the cells treated with $H_2O_2$ in the absence or presence of PJE showed that the crumbled G1 peak was accumulated by the treatment with $H_2O_2$ alone, but restored by addition of PJE. Portion of cells that undergo apoptosis mediated by oxidative stress was decreased by treatment of PJE. The nuclear fragmentation occurred in the oxidative damaged MEF cells was also decreased by PJE treatment. Conclusions: Taken together, our results suggest that PJE exhibits significant antioxidant activity and functions to inhibit cell death mediated by oxidative damage induced apoptotic pathways.

Magnetite Dissolution by Copper Catalyzed Reductive Decontamination (촉매제로 구리이온을 이용한 환원성 제염에 의한 마그네타이트 용해)

  • Kim, Seonbyeong;Park, Sangyoon;Choi, Wangkyu;Won, Huijun;Park, Jungsun;Seo, Bumkyoung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.4
    • /
    • pp.421-429
    • /
    • 2018
  • Hydrazine based reductive dissolution applied on magnetite oxide was investigated. Dissolution of Fe(II) and Fe(III) from magnetite takes place either by protonation, surface complexation, or reduction. Solution containing hydrazine and sulfuric acid provides hydrogen to break bonds between Fe and oxygen by protonation and electrons for the reduction of insoluble Fe(III) to soluble Fe(II) in acidic solution of pH 3. In terms of dissolution rate, numerous transition metal ions were examined and Cu(II) ion was found to be the most effective to speed up the dissolution. During the cycle of Cu(I) ions to Cu(II) ions, the released electron promoted the reduction of Fe(III) and Cu(II) ions returned to Cu(I) ion due to the oxidation of hydrazine. In the experimental results, the addition of a very low amount of cupric ion (about 0.5 mM) to the solution increased the dissolution rate about 40% on average and up to 70% for certain specific conditions. It is confirmed that even though the coordination structure of copper ions with hydrazine is not clear, the $Cu(II)/H^+/N_2H_4$ system is acceptable regarding the dissolution performance as a decontamination reagent.

Antioxidant and Anti-inflammatory Effects of Ethanol Extract of Aster yomena in RAW 264.7 Macrophages (RAW 264.7 대식세포에서 쑥부쟁이 추출물의 항산화 및 항염증 효능에 관한 연구)

  • Kim, Sung Ok;Jeong, Ji-Suk;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.29 no.9
    • /
    • pp.977-985
    • /
    • 2019
  • Aster yomena (Kitam.) Honda is an edible vegetable and perennial herb belonging to the Asteraceae family, and has been used for a long time for the prevention and treatment of various diseases. Although leaf extracts of A. yomena are known to have antioxidant and anti-inflammatory effects, accurate efficacy assessments are still inadequate. In this study, we investigated whether the antioxidant efficacy of ethanol extract of A. yomena leaf (EEAY) is correlated with the anti-inflammatory effect in RAW 264.7 macrophages. The results showed that EEAY significantly inhibited the hydrogen peroxide ($H_2O_2$)-induced growth inhibition in RAW 264.7 cells, which was associated with increased expression of nuclear factor erythroid 2-related factor-2 (Nrf2) and heme oxygenase-1 (HO-1). EEAY pretreatment also effectively prevented $H_2O_2$-induced reactive oxygen species generation and apoptosis through inhibition of caspase-3 activation and poly (ADP-ribose) polymerase degradation. Additionally, EEAY significantly increased the expression and production of interleukin-10, a representative anti-inflammatory cytokine, which was associated with increased expression of toll-like receptor 4 and myeloid differentiation factor 88 at transcriptional and translational levels. Furthermore, the increased production of nitric oxide (NO) by lipopolysaccharide was markedly abolished under the condition of EEAY pretreatment, and the inhibitory effect of NO production by EEAY was further increased by hemin, an HO-1 inducer. Overall, our results suggest that EEAY is able to activate the Nrf2/HO-1 signaling pathway to protect RAW 264.7 macrophages from oxidative and inflammatory stress.

Antioxidant and Antiproliferating Effects of Prunus mume Vinegar Powder on Breast Cancer Cells (매실 식초 분말의 항산화 및 유방암 세포주 증식 억제 효과)

  • Park, Wool-Lim;Kim, Jeong-Ho;Heo, Ji-An;Won, Yeong-Seon;Seo, Kwon-Il
    • Journal of Life Science
    • /
    • v.31 no.2
    • /
    • pp.149-157
    • /
    • 2021
  • Prunus mume Sieb. et Zucc is widely distributed in East Asia (Korea, Japan, and China), and its fruit is often used as a medication and food material. However, because most previous studies have only investigated the state of Prunus mume fruit extract, studies on the various ways of processing this extract are still needed to increase its utilization. In this study, we evaluated the physicochemical properties and physiological activities of spray-dried Prunus mume vinegar powder (SPP). The sugar content, pH, total acidity, and moisture content of the SPP were 8.90 °Brix, 3.19, 1.05%, and 3.07%, respectively. The SPP exhibited significantly high antioxidant activity in terms of DPPH radical scavenging activity (65.55%), reducing power (1.48), and hydrogen peroxide scavenging activity (48.07%). In addition, the SPP remarkably decreased the cell viability of human breast MDA-MB-231 and human skin cancer SK-MEL-28 in a dose-dependent manner. The morphological results of the treatment of MDA-MB-231 cells with SPP were distorted, shrunken cell masses. Furthermore, apoptotic bodies and nuclear condensation formed in the SPP-treated MDA-MB-231 cells. The total polyphenol and flavonoid contents of the SPP were 59.58 ㎍/g (gallic acid equivalent) and 57.56 ㎍/g (quercetin equivalent). The results of this study indicate that SPP, which has antioxidant activity and anticancer effects, can be useful in the development of natural medicines and functional food ingredients.

A Study on the Expansion of Secondary Battery Manufacturing Technology through the Scale of V4 and Energy Platform (V4와 에너지 플랫폼 규모화를 통한 2차 전지 제조 기술 확대 방안)

  • Seo, Dae-Sung
    • Journal of Industrial Convergence
    • /
    • v.20 no.10
    • /
    • pp.87-94
    • /
    • 2022
  • This paper seeks to raise inflection points of battery manufacturing bases in Korea in the V4 region through the reorganization of new industrial technologies in accordance with ESG. As a result, the global supply chain market is cut off. The Russian-Ukraine war and the U.S.-China hegemony are competing in the economic crisis caused by COVID-19. It is showing diversification of new suppliers in an environment where mineral, grain procurement, gas, and even wheat imports from China and Russia are not possible. As a protective glocal, this area is used as a buffer zone(Pro-Russia, Hungary). to an isolated zone(anti-Russia, Poland) by war. In this paper, economic growth is expected to slow further due to the EU tapering period and high inflation in world countries. Due to these changes, the conversion of new tech industry and the contraction of Germany's structure due to energy supply may lose the driving force for economic growth over the past 20 years. This is caused by market disconnection(chasm) in the nominal indicators in this area. On the other hand, Korea should actively develop into the V4 area as an energy generation export (nuclear and electric hydrogen generation) area as a bypass development supply area due to the imbalance in the supply chain of rare earth materials that combines AI. By linking this industry, the energy platform can be scaled up and reliable supply technology (next generation BT, recycling technology) in diversification can be formed in countries around the world. This paper proves that in order to overcome the market chasm caused by the industries connection, new energy development and platform size can be achieved and reliable supply technology (next-generation battery and recycling technology, Low-cost LFP) can be diversified in each country.

Green perilla leaf extract ameliorates long-term oxidative stress induced by a high-fat diet in aging mice

  • Edward, Olivet Chiamaka;Thomas, Shalom Sara;Cha, Kyung-Ok;Jung, Hyun-Ah;Han, Anna;Cha, Youn-Soo
    • Nutrition Research and Practice
    • /
    • v.16 no.5
    • /
    • pp.549-564
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Oxidative stress is caused by an imbalance between harmful free radicals and antioxidants. Long-term oxidative stress can lead to an "exhausted" status of antioxidant defense system triggering development of metabolic syndrome and chronic inflammation. Green perilla (Perilla frutescens) is commonly used in Asian cuisines and traditional medicine in southeast Asia. Green perilla possesses numerous beneficial effects including anti-inflammatory and antioxidant functions. To investigate the potentials of green perilla leaf extract (PE) on oxidative stress, we induced oxidative stress by high-fat diet (HFD) in aging mice. MATERIALS/METHODS: C57BL/6J male mice were fed HFD continuously for 53 weeks. Then, mice were divided into three groups for 12 weeks: a normal diet fed reference group (NDcon), high-fat diet fed group (HDcon), and high-fat diet PE treated group (HDPE, 400 mg/kg of body weight). Biochemical analyses of serum and liver tissues were performed to assess metabolic and inflammatory damage and oxidative status. Hepatic gene expression of oxidative stress and inflammation related enzymes were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS: PE improved hepatopathology. PE also improved the lipid profiles and antioxidant enzymes, including hepatic glutathione peroxidase (GPx) and superoxide dismutase (SOD) and catalase (CAT) in serum and liver. Hepatic gene expressions of antioxidant and anti-inflammatory related enzymes, such as SOD-1, CAT, interleukin 4 (IL-4) and nuclear factor erythroid 2-related factor (Nrf2) were significantly enhanced by PE. PE also reduced the levels of hydrogen peroxide (H2O2) and malondialdehyde (MDA) in the serum and liver; moreover, PE suppressed hepatic gene expression involved in pro-inflammatory response; Cyclooxygenase-2 (COX-2), nitric oxide synthase (NOS), interleukin 1 beta (IL-1β), and interleukin 6 (IL-6). CONCLUSIONS: This research opens opportunities for further investigations of PE as a functional food and possible anti-aging agent due to its attenuative effects against oxidative stress, resulting from HFD and aging in the future.

Fisetin Protects C2C12 Mouse Myoblasts from Oxidative Stress-Induced Cytotoxicity through Regulation of the Nrf2/HO-1 Signaling

  • Cheol Park;Hee-Jae Cha;Da Hye Kim;Chan-Young Kwon;Shin-Hyung Park;Su Hyun Hong;EunJin Bang;Jaehun Cheong;Gi-Young Kim;Yung Hyun Choi
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.5
    • /
    • pp.591-599
    • /
    • 2023
  • Fisetin is a bioactive flavonol molecule and has been shown to have antioxidant potential, but its efficacy has not been fully validated. The aim of the present study was to investigate the protective efficacy of fisetin on C2C12 murine myoblastjdusts under hydrogen peroxide (H2O2)-induced oxidative damage. The results revealed that fisetin significantly weakened H2O2-induced cell viability inhibition and DNA damage while blocking reactive oxygen species (ROS) generation. Fisetin also significantly alleviated cell cycle arrest by H2O2 treatment through by reversing the upregulation of p21WAF1/CIP1 expression and the downregulation of cyclin A and B levels. In addition, fisetin significantly blocked apoptosis induced by H2O2 through increasing the Bcl-2/Bax ratio and attenuating mitochondrial damage, which was accompanied by inactivation of caspase-3 and suppression of poly(ADP-ribose) polymerase cleavage. Furthermore, fisetin-induced nuclear translocation and phosphorylation of Nrf2 were related to the increased expression and activation of heme oxygenase-1 (HO-1) in H2O2-stimulated C2C12 myoblasts. However, the protective efficacy of fisetin on H2O2-mediated cytotoxicity, including cell cycle arrest, apoptosis and mitochondrial dysfunction, were greatly offset when HO-1 activity was artificially inhibited. Therefore, our results indicate that fisetin as an Nrf2 activator effectively abrogated oxidative stress-mediated damage in C2C12 myoblasts.

Activation of Heme Oxygenase-1 by Mangiferin in Human Retinal Pigment Epithelial Cells Contributes to Blocking Oxidative Damage

  • Cheol Park;Hee-Jae Cha;Hyun Hwangbo;EunJin Bang;Heui-Soo Kim;Seok Joong Yun;Sung-Kwon Moon;Wun-Jae Kim;Gi-Young Kim;Seung-On Lee;Jung-Hyun Shim;Yung Hyun Choi
    • Biomolecules & Therapeutics
    • /
    • v.32 no.3
    • /
    • pp.329-340
    • /
    • 2024
  • Mangiferin is a kind of natural xanthone glycosides and is known to have various pharmacological activities. However, since the beneficial efficacy of this compound has not been reported in retinal pigment epithelial (RPE) cells, this study aimed to evaluate whether mangiferin could protect human RPE ARPE-19 cells from oxidative injury mimicked by hydrogen peroxide (H2O2). The results showed that mangiferin attenuated H2O2-induced cell viability reduction and DNA damage, while inhibiting reactive oxygen species (ROS) production and preserving diminished glutathione (GSH). Mangiferin also antagonized H2O2-induced inhibition of the expression and activity of antioxidant enzymes such as manganese superoxide dismutase and GSH peroxidase, which was associated with inhibition of mitochondrial ROS production. In addition, mangiferin protected ARPE-19 cells from H2O2-induced apoptosis by increasing the Bcl-2/Bax ratio, decreasing caspase-3 activation, and blocking poly(ADP-ribose) polymerase cleavage. Moreover, mangiferin suppressed the release of cytochrome c into the cytosol, which was achieved by interfering with mitochondrial membrane disruption. Furthermore, mangiferin increased the expression and activity of heme oxygenase-1 (HO-1) and nuclear factor-erythroid-2 related factor 2 (Nrf2). However, the inhibition of ROS production, cytoprotective and anti-apoptotic effects of mangiferin were significantly attenuated by the HO-1 inhibitor, indicating that mangiferin promoted Nrf2-mediated HO-1 activity to prevent ARPE-19 cells from oxidative injury. The results of this study suggest that mangiferin, as an Nrf2 activator, has potent ROS scavenging activity and may have the potential to protect oxidative stress-mediated ocular diseases.